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The digital revolution has ushered in many societal and economic benefits. Yet access
to digital technologies such as mobile phones and internet remains highly unequal,
especially by gender in the context of low- and middle-income countries (LMICs).
While national-level estimates are increasingly available for many countries, reliable,
quantitative estimates of digital gender inequalities at the subnational level are lacking.
These estimates, however, are essential for monitoring gaps within countries and
implementing targeted interventions within the global sustainable development goals,
which emphasize the need to close inequalities both between and within countries.
We develop estimates of internet and mobile adoption by gender and digital gender
gaps at the subnational level for 2,075 regions in 117 LMICs from 2015 through
2025, a context where digital penetration is low and national-level gender gaps
disfavoring women are large. We construct these estimates by applying machine-
learning algorithms to Facebook user counts, geospatial data, development indicators,
and population composition data. We calibrate and assess the performance of these
algorithms using ground-truth data from subnationally representative household survey
data from 33 LMICs. Our results reveal striking disparities in access to mobile and
internet technologies between and within LMICs. These disparities imply that as of
2025, women are 19% less likely to use the internet and 8% less likely to own a mobile
phone in LMICs, corresponding to over 190 million fewer women owning a mobile
phone and over 320 million fewer women using the internet.

digital adoption | sustainable development | machine learning | low- and middle-income countries |
gender inequality

The digital revolution has yielded major societal and economic benefits in low- and
middle-income country (LMIC) settings. Internet and mobile technologies are powerful
mediums for boosting social connectivity (1, 2), promoting social learning, and providing
access to new information channels (3, 4). Increasing digital adoption has generated
“digital dividends,” such as job creation (5), better educational outcomes (6), and
improved economic growth (7). From a gender perspective, digital technologies have
the potential to empower women across many domains and reduce gender inequalities
by providing access to information, networks, and vital services that lead to higher
contraceptive uptake (8), increased labor market and economic opportunities (9–12),
and improved child and maternal health (8, 13–15). The benefits of digital technology
are generally greatest in the most unequal, disadvantaged regions (8).

Yet the global spread of digital technologies has been uneven. Over 2.6 billion people
have never accessed the internet, and the majority of the unconnected are women
and girls (16). This digital divide by gender is an increasingly salient dimension of
contemporary population inequality and is especially pronounced in LMICs. Reliable
quantitative estimates of digital gender inequalities are essential for tracking progress
on and implementing targeted policies and interventions in the context of the global
sustainable development goals (SDGs). Reducing inequalities in access to digital
technologies by gender is a target within SDG 5 on gender equality, while digital literacy
is a core part of SDG 4 on the right to education.

Gender-disaggregated data on digital adoption in LMIC settings are significantly
lacking. While the availability of national-level estimates of digital gender gaps has
improved (16–18), to date there are no subnational estimates of digital adoption by
gender for the majority of LMICs in the world. Past estimates of digital adoption
have typically been based on probabilistic household surveys (19, 20), which generally
either lack gender disaggregation or are underpowered for subnational analyses. Even
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when high-quality, subnationally representative data are
available, they quickly become outdated in the context of a
rapidly evolving technological landscape. In other contexts, such
as poverty (21, 22), wealth (23), and population mapping (24),
“big data” derived from satellite, social media, and mobile
phone records have been used to overcome data gaps in survey-
based approaches. The potential of nontraditional sources for
mapping gender inequality indicators at subnational geographical
resolution has yet to be explored.

Subnational estimates are critical because internet and mobile
phone adoption can vary substantially within countries. This mir-
rors patterns in economic and educational development, which
also show high subnational heterogeneity (25). These subnational
inequalities in human development are often largest at low levels
of human development and also substantial at middle levels.
When taking subnational variation into account, inequalities in
human development among LMICs are approximately double
those when only accounting for national-level variation (25).
Moreover, factors associated with digital adoption for women
and men can differ, as economic development does not necessarily
weaken gender inequalities and facilitate women’s empowerment
linearly (26). As development programs are increasingly deployed
through digital means, and are often targeted in local geographies,
subnational estimates are critical to monitoring their progress
and understanding how digital inequalities affect sustainable
development.

Here, we introduce an approach to estimating subnational
digital adoption and gender gaps by applying machine learning
algorithms to social media data, big geospatial data, and devel-
opment indicators. We focus on internet adoption, defined as
having used the internet in the past 12 mo, and mobile phone
ownership, defined as having personal ownership of a mobile
phone. We train and assess the performance of these algorithms
using “ground truth” data from subnationally representative
Demographic and Health Surveys (DHS) from 525 regions
across 33 LMICs. We use this approach to estimate digital
adoption at the first subnational administrative level (admin-
1) for 2,075 regions in 117 LMICs where sufficient data are
available to make estimates. To facilitate the study of trends in
digital adoption and inequality over time, we produce annual
estimates from 2015 to 2023, and monthly estimates beginning
in 2024 through the present day. These estimates are provided
freely alongside this study and will be publicly available and
updated on a monthly basis on an interactive web dashboard
www.digitalgendergaps.org.

Results

Our general approach is illustrated in Fig. 1. We use survey-
based indicators of internet usage and mobile phone ownership
for men and women combined with a set of satellite-based
geospatial data, development indicators, and social media user
count data to train a machine learning model. The social
media data we use are Facebook monthly active user counts
by gender obtained from the public Facebook Marketing API.
The availability of 33 recent DHS surveys (Fig. 1A) provides
us good coverage of ground truth data on internet and mobile
adoption by gender and digital gender gaps to calibrate and
assess our models. We temporally align our predictive features
to the year of the DHS survey. The near global coverage
and more timely, higher-frequency availability of the geospatial
and social media features provides a basis for extrapolation to
locations without DHS data. Using this approach, we expand our
geographical and temporal coverage of digital adoption estimates

to 2,075 regions in 117 LMICs across the globe from 2015 to the
present.

We focus on LMICs as national-level adoption in these settings
is low, digital gender gaps disfavoring women are large (17, 18),
and gender-disaggregated data at finer geographical resolution on
digital adoption are limited. Our results reveal large disparities in
digital adoption between and within countries and demonstrate
the promise of this method for real-time monitoring of global
SDGs.

EvaluatingPredictiveAccuracy. To assess the predictive accuracy
of our machine learning models, we employ three validation
strategies: 1) leave-one-country-out cross-validation (LOCO-
CV), 2) conventional 10-fold cross-validation, and 3) external
benchmarking against independent surveys from the Living Stan-
dards Measurement Study (LSMS) and the Multiple Indicator
Cluster Survey (MICS) program. Together, these methods help
validate our approach and provide evidence of the external
validity of our estimates outside of countries where DHS ground
truth data are available.

To assess the performance of our estimates using LOCO-CV,
we hold out all data from one country at a time. We train our
model on ground truth data from all countries not withheld,
then make predictions for each subnational unit in the hold-out
country. This process is repeated for each country. The resulting
estimates give insight into how we would expect the model to
perform in countries without ground truth data.

LOCO-CV is a contrasting and more stringent approach to
standard 10-fold cross-validation, where one fold (one-tenth) of
the dataset is left out at a time instead of an entire country.
Leaving out an entire country prevents any data from that
country from influencing the training process. The 10-fold cross-
validation gives insight into performance in countries where
survey data are available in many, but not all areas. In contrast,
LOCO-CV imitates a setting where no ground truth data are
available for any subnational units in a given country. As over
80 LMICs have no ground truth data on digital adoption at the
admin-1 level, we consider this a more conservative and realistic
evaluation of model performance.

Fig. 2 plots our model-based predicted values against our
observed ground truth values across all subnational units for
the different indicators of internet and mobile adoption by
gender, and the gender gap indices (female-to-male ratio) of
both. Maps visualizing predicted values of all indicators are shown
in SI Appendix, section 4. To quantify the agreement between
our predictions and ground truth, we report the coefficient of
determination (R2), the Pearson correlation coefficient (r), and
the mean absolute error (MAE). The coefficient of determination
(R2) represents the proportion of total variation in the dependent
variable that is predictable from the independent variable, and
the MAE reports the average absolute difference between the
predicted and observed values.

Our predictions align closely with the ground truth where
these are available. On average, our predictions are better for
women’s internet adoption than men’s. Our predictive accuracy
is lower for our estimates of gender gaps. This likely reflects a
combination of more noise in the underlying ground truth data
(for more details, see SI Appendix, section 3C) and overall weaker
relationship between our predictive features and digital gender
gaps compared to digital adoption levels (SI Appendix, Fig. S32).
In addition to material gender inequalities, which we are better
able to measure in our feature set through indicators linked to
income and education, gender gaps may reflect social norms,
which are generally more challenging to measure in these settings.
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Fig. 1. Description of the general approach. (A) The 33 countries with available ground truth data. (B) Model-based estimates of internet adoption for women
across 117 countries for January 2025. (C) Enlargement of estimates for Nigeria. (D) Illustration of inputs to the machine learning models for predicting digital
adoption indicators.

As an additional validation exercise, we benchmark our
estimates against the LSMS surveys—high-quality, subnationally
representative surveys fielded by the World Bank. Despite using
slightly different definitions of digital adoption than the DHS,
our estimates show strong agreement with LSMS estimates at the
admin-1 level (SI Appendix, Fig. S3). We also benchmark against
MICS surveys at the admin-1 level (SI Appendix, Fig. S4), finding
close alignment even in high-adoption settings in Central and
South America.

Through temporally aligning our features with the year of the
DHS, the model learns from both spatial and temporal variation.
Even though the DHS are fielded at different time points,
our models predict accurately across the span of 2015 to 2022
(see SI Appendix, section 3F for details). This suggests that our
model generalizes well across time and space. Direct validation of
temporal trends is constrained by data availability and differences
in survey design, question wording, and sample sizes across sur-
veys. Despite these constraints, we conduct analyses using DHS,
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Fig. 2. Summary of model performance using leave-one-country-out cross-validation (LOCO-CV). (A) Scatterplot of predicted vs. observed subnational values
for internet adoption and mobile phone ownership for women. (B) Scatterplot of predicted vs. observed subnational values for mobile phone ownership and
internet penetration for men. (C) Scatterplot of predicted vs. observed subnational values of the gender gap index (female-to-male ratio) for internet and
mobile phone adoption. The R2 values report the coefficient of determination, the r values report the Pearson Correlation Coefficient, and MAE values report
mean absolute error.

MICS, and LSMS surveys for the limited number of countries
where multiple waves are available. As shown in SI Appendix,
Fig. S10, the correlations between our predicted and survey-
based estimates of change over time range from 0.21 to 0.38.
We report these correlations to assess alignment despite known
limitations, but caution against overinterpretation: Subnational
estimates of multiyear change from different surveys are subject
to substantial noise. Low to moderate correlation is expected and
does not necessarily reflect the models’ inability to capture trends.

The variance of the predicted changes in adoption over time
shown in SI Appendix, Fig. S10 is far more attenuated than the
variance of survey-based estimates of changes in adoption over
time. Further, survey-based estimates show declines in adoption
over time for some subnational units that our models do not
predict. Given current limitations in the availability of consistent
surveys over time and small sample sizes, it is difficult to ascertain
to what extent these differences reflect model performance or
inconsistencies in survey-based estimates arising from differing
definitions and sampling variability.

For all estimates, we calculate a corresponding estimate of
model error (SI Appendix, section 3B). We do this by regressing
the absolute value of the residual (model error) against the set of
all observable features, following (23). This model is then used
to calculate an estimate of model error for each subnational unit.
Our predicted model error is smallest in low-adoption settings,
indicating our approach is able to identify areas that are lagging
behind.

Within-Country Results. Fig. 3 illustrates within-country varia-
tion in women’s internet adoption using three examples from the
African continent. These countries exhibit low overall internet
penetration rates, substantial heterogeneity across admin-1 units,
and ongoing collective efforts to enhance internet accessibility
and quality (e.g., the Zimbabwe National Broadband Plan).
Reliable and timely estimates of digital adoption are crucial for
assessing the impact and effectiveness of these initiatives.

In Nigeria, 55% of women in the relatively affluent and urban
southwestern state of Lagos had accessed the internet in the past
12 mo, while less than 1% of women had accessed the internet in
the rural northern state of Kebbi as of 2018 (Fig. 3A), highlighting
the magnitude of within-country heterogeneity. Within Nigeria,
the model-based estimates align closely with the observed DHS
ground truth (Fig. 3B).

For Zimbabwe (Fig. 3D), our model is able to accurately
estimate internet adoption in the small geographic provinces
of Harare and Bulawayo, which have nearly triple the rate of
internet penetration of neighboring regions. In Senegal (Fig. 3G),
our estimates slightly underpredict overall internet penetration,
but closely capture the overall pattern of adoption. Fig. 3J
shows the within-country distribution of the Pearson Correlation
Coefficient (r) and Fig. 3K shows the within-country distribution
of mean absolute error between our predictions and ground
truth using both standard 10-fold cross-validation and LOCO-
CV. After demeaning the values by country and pooling all
subnational units, correlations between observed and predicted
values range from 0.49 to 0.81 (SI Appendix, Fig. S34). These
correlations reflect the models’ ability to capture subnational
variation within countries in digital adoption and gender gaps.
For a comparison of our model-based estimates and ground truth
for each country, see SI Appendix, Fig. S26. Finally, Fig. 3L shows
the within-country range in internet adoption among women
at different levels of national adoption for our January 2025
estimates, indicating that within-country variation is generally
larger at lower levels of adoption. This pattern is consistent across
other adoption indicators (SI Appendix, Fig. S29).

Fig. 4 shows the proportion contribution of within-country
inequality in internet and mobile adoption to total inequality
within different human development index (HDI) quantiles in
the distribution of 117 focal LMICs, based on January 2025
estimates (further details described in SI Appendix, section 3D).
Subnational inequality accounts for a large proportion of the
overall variation in adoption, especially at lower levels of human
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development. For internet adoption in countries with the lowest
levels of human development, the within-country inequality
accounts for 40% (women) and 48% (men) of the overall
inequality.

Our estimates highlight substantial disparities in digital adop-
tion and gender gaps between the Top and Bottom subnational
units. Fig. 5 illustrates the countries with the largest subnational
disparities in internet and mobile gender gaps as of January 2025.
TheBottom bar shows the averageTop-Bottom subnational dispar-
ity across all countries, which for the internet gender gap is 0.13
and mobile gender gap 0.11. In Nigeria, for example, the country
with the largest subnational disparity in the internet gender gap
index, the gender gap between the region closest to gender parity
(Lagos, 0.92) and the region farthest from gender parity (Katsina,
0.43) is 0.49. The largest within-country disparities for internet

and mobile adoption levels are shown in SI Appendix, Fig. S20.
Overall, internet adoption exhibits larger subnational disparities
than mobile adoption. Across all digital indicators of adoption
levels and gender gaps, the largest subnational disparities are
concentrated in Africa, where historically uneven development,
ethno-cultural differences, and investment efforts have resulted
in highly disparate subnational regions (27). Outside of Africa,
large subnational disparities occur in India and Pakistan.

Trends in Digital Adoption andGender Gaps. For each indicator,
we produce annual estimates from 2015 to 2023 and monthly
estimates beginning January, 2024 through the present. Based
on this, we can assess how average within-country inequality
in internet adoption has changed over time. Fig. 6D shows
the relative within-country inequality in the gender gap as
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Fig. 5. The top 10 countries with the largest spread between their lowest and highest subnational unit with respect to the digital gender gap index (female-
to-male ratio), organized in descending order by spread size for mobile (A) and internet (B). The Bottom bar shows the average Top-Bottomsubnational spread
across all countries.
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defined by the GINI index by continent. The GINI index is
a widely used measure of inequality ranging from 0 to 1, with
higher values corresponding to higher levels of inequality. Over
time, inequality in subnational units within countries has been
declining. In particular, much progress has been made in Africa,
with inequality within subnational units declining between 2015
and 2025. Progress has been made in Asia and the Americas over
time, but from lower starting levels of within-country inequality.
Much of this is explained by increasing adoption: As countries
move toward near universal adoption in all subnational units,
inequality declines.

Fig. 6 shows trends over time in the internet gender gap index
across three example countries with contrasting trends. Both
Nigeria and India have made substantial progress in closing the
gender gap across all of their subnational units, as indicated by the
increasing female-to-male ratio of internet use. Yet meaningful
gender gaps remain in both countries, and progress is not
universal. Afghanistan, for example, has faced stalled progress,
and gender inequality with respect to internet adoption has
increased, primarily due to stalled internet adoption for women,
as revealed by the worsening female-to-male ratio. The model
is able to detect this decrease in internet adoption for women
beginning in 2021, which coincides with the year of the Taliban’s
Offensive and return to power in the country.

Feature Sets. Next, we compare the performance of models
trained on different feature sets to give insight into the most
important features for our models. We test three sets of features:
features constructed from Facebook monthly active user counts
(“Facebook features”), features derived from geospatial, satellite,

and population data (“offline features”), and our full set of
features. Fig. 7A shows theR2 value (coefficient of determination)
based on models using each different set of features and
LOCO-CV.

Several insights emerge from this figure. First, for mobile
phone indicators, models trained using only Facebook features
performed the worst, while for internet indicators, models trained
using only offline features had the poorest performance. In
general, Facebook features are stronger predictors of internet
use than mobile phone use, likely due to the direct relation-
ship between internet and Facebook usage. Second, including
Facebook features substantially improves model accuracy. The
increase in R2 value was smallest for the mobile gender gap (0.07)
and largest for internet adoption for women (0.40) between the
offline model and the combined model with Facebook and offline
features. This suggests that combining Facebook and offline
features is a promising approach for estimating digital adoption
and gender gaps, particularly for internet outcomes. Finally,
offline features are stronger predictors of the mobile gender gap,
whereas Facebook features better predict the internet gender gap.
Offline predictors only modestly improved the performance of
the model predicting gender gaps in internet adoption, suggesting
that offline predictors may proxy for access and adoption, but do
not as effectively capture the relative disadvantage of women
compared with men in internet access.

Fig. 7B shows the most important features in our model
predicting internet adoption for women; SI Appendix, Fig. S32
shows the most important features for all indicators. Given
the number of highly correlated predictors (e.g., Facebook
penetration for men and Facebook penetration for women), we
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Fig. 6. (A–C) Trends over time in India, Nigeria, and Afghanistan for the internet gender gap index (female to male ratio). The light gray lines show subnational
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Fig. 7. Model performance and feature importance. (A) The R2 values from leave-one-country-out cross-validation (LOCO-CV) using Facebook predictors,
offline predictors, and both Facebook and offline predictors. (B) The 10 top features with strongest predictive power for internet penetration for women, as
measured by R2 for a univariate regression.

calculate feature importance as the R2 for a univariate regression,
assessed using LOCO-CV. These results show the factors that
are most strongly associated with digital adoption.

The subnational Facebook features, along with proxies of
overall economic development and human development at the
subnational level, are the best predictors of overall internet adop-
tion for both men and women. Other important features include
the subnational education index and national-level Facebook
penetration features. The importance of the human development
index and its components is consistent with prior research
modeling digital gender gaps at the national level (17, 18).
While subnational income indices of the HDI are stronger
predictors of gender-specific levels of adoption, the educational,
human development, and gender development indices are more
important for predicting gender gaps. This suggests that while
digital adoption levels reflect overall economic development,
digital gender gaps are more closely tied to levels of educational
attainment and gender equality.

Discussion

Access to digital technology is an increasingly important di-
mension of population inequality, and acknowledged as a key
indicator within the global SDGs, specifically SDG 4 on edu-
cation, SDG 5 on gender equality and women’s empowerment,
and SDG 17 on revitalizing global partnership for sustainable
development (SI Appendix, section 2). However, consistent and
reliable subnational estimates of internet or mobile adoption
are lacking, particularly in LMICs. Here, we demonstrate an
approach for estimating subnational levels of internet adoption
and mobile phone ownership by gender by applying machine
learning algorithms to Facebook user counts, geospatial data,
development indicators, and population composition data. Our
approach enables us to expand subnational estimates from 525
regions in 33 LMICs, for which DHS ground truth is available,
to 2,075 regions in 117 LMICs from 2015 to 2025.

Our results highlight the importance of focusing on the
subnational context. In over 40 countries, the gap between
the highest and lowest subnational units with respect to female
internet adoption exceeds 30 percentage points, with an average
gap of 28 percentage points. This subnational variation is
especially pronounced in countries with very low levels of human
development, where within-country inequality can account for
over 40% of total inequality. This underscores the importance
of subnational resolution for a more complete understanding
of inequality in digital adoption, especially in countries with
the lowest overall levels of human development. Our estimates
provide a valuable lens for researchers and policy makers
through which to assess areas that stand to benefit from the
increasing rollout of digital programs and services within global
development policies, as well as those at risk of being left
behind. Similarly our method enables us and others to track how
digital inequalities are shaped by external sociopolitical events,
as indicated by the Afghanistan case where our model is able to
detect a decrease in women’s internet adoption after 2021 with
the resurgence of the Taliban.

There are several promising avenues for further research to
address some of our study’s limitations. First, while Facebook
is currently the world’s largest social media platform, and
is especially dominant in many LMICs, its popularity may
decline in the future. This approach could be expanded to
include social media data from additional platforms, though the
ability to do so is contingent on public access to platform user
count data. Second, our estimates are at the first administrative
level. This represents a large improvement over national-level
estimates, but some potential policy use cases may demand more
geographic granularity. If reliable digital adoption estimates and
social media user count data become available at the admin-
2 level, our methods can be extended to a finer geographic
resolution. Third, our training data are limited geographically,
especially in Central and South America. However, our models
perform well when compared to external survey-based estimates
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from the LSMS, indicating strong external validity on unseen
data (SI Appendix, Fig. S3). Further, our estimates demon-
strate strong and consistent correlations with independent data
from the MICS, including in countries in Central and South
America (SI Appendix, Fig. S6). Finally, while we provide
systematic subnational predictions of trends of digital adoption
over time, rigorous validation is limited by data availability.
We recommend caution in interpreting unit-level temporal
changes. We call upon more data collection efforts within
global surveys to monitor digital inequalities at subnational
levels.

Our approach addresses the call to usher in a “data revolution
for sustainable development” by integrating social media, geospa-
tial, and population data to monitor progress on the SDGs with
better geographical and temporal resolution (28). We contribute
to a growing body of work that emphasizes how machine
learning approaches together with nontraditional sources of
data can provide large-scale, cost-effective, and complementary
measurement approaches to survey and field-based approaches for
SDG monitoring (17, 24) and poverty and economic inequality
mapping (22, 23, 29, 30). We show how these innovations can be
applied to map gender-disaggregated indicators at finer geograph-
ical resolution, which is crucial for reducing inequalities both
within- and between-countries. While reliable ground truth data
are essential for training our models, the incorporation of higher-
frequency social media and geospatial data enables us to provide
a contemporary estimate of digital gender gaps. Moving forward,
our continuous Facebook collections and regular updates will
allow us track progress on digital gender inequalities across all
LMICs with a monthly resolution (“nowcasting”). Alongside the
geographical and temporal breadth, this subnational pipeline can
also be usefully applied to assess the impacts of sociopolitical
changes, policies, and interventions over time in specific cases
and contexts.

Materials and Methods

To produce our estimates, we use three main sources of data: ground truth
from DHS, offline features, and Facebook features. Our Facebook features are
constructed from the Facebook monthly active user counts obtained from the
Facebook Marketing API. Our offline features are constructed from population
density data, satellite imagery, and subnational indices on human development,
education, and income. No ethical approval was required for the study as we use
entirely secondary data sources in the public domain that are preaggregated or
aggregated from anonymized datasets. To train and calibrate our models, we
use ground-truth data on internet use and mobile phone ownership from DHS
surveys in 33 LMICs. A full list of features and ground truth outcomes is shown
in SI Appendix, Table S1 and steps outlining feature construction are provided
in SI Appendix, section 1.

Ground Truth Data on Internet and Mobile Access. Our ground-truth data
come from 33 DHS surveys conducted between 2015 and 2023 covering 525
subnational units (31, 32). We include surveys from DHS Phase 7 onward,
when questions on digital adoption were first added to the DHS questionnaire.
There are several reasons DHS surveys are an excellent source of ground
truth data for measuring digital adoption. First, DHS surveys are subnationally
representative at the admin-1 level and have a well-established and vetted
survey design. Second, unlike many censuses which ask about digital adoption
at the household level, DHS surveys collect information at the individual level
about digital adoption for both men and women. The individual-level data
allow us to calculate gender-specific rates of digital adoption for internet
and mobile technologies. Finally, across countries, the DHS program uses
harmonized survey questions and sampling design, allowing for cross-national
comparisons.

We use DHS microdata to obtain estimates of the percent of men and women
aged 15 to 49 who own a mobile phone and have accessed the internet.
Internet adoption is defined as having used the internet in the past 12 mo, and
mobile phone ownership is defined as having personal ownership of a mobile
phone. We focus on internet use in the past 12 mo, rather than having ever
used the internet, because we are interested in measuring how many people
have reliable access to the internet. We also calculate the gender gap index,
defined as

Gender Gap Index =
If/Im

Popf/Popm
, [1]

where for a specific indicator I (e.g., mobile phone ownership or internet use
in the past 12 mo), If is the number of female users aged 15 to 49, Im is the
number of male users aged 15 to 49, Popf is the total population of women
aged 15 to 49, and Popm is the total male population aged 15 to 49.

FacebookMonthly Active Users. To obtain counts of Facebook monthly active
users (MAU), we query the public Facebook Marketing API. The Facebook
Marketing API provides estimates of the number of daily or monthly active
users disaggregated by characteristics such as gender, age, and device type
(e.g., Android, iOS) within a given geographic boundary. To query the Facebook
Marketing API, we use the pysocialwatcher package (33), and collect counts of
monthly active users by gender and device type at the admin-1 level.*

We use these MAU counts to construct several different Facebook features. Our
primary features are Facebook penetration by gender, defined as the proportion
of women (or men) aged 18+ who used Facebook in the past month within
a given admin-1 unit. Additionally, we create features corresponding to both
the gender-specific gaps (female-to-male ratios) and the fraction of users who
accessed Facebook through different access devices (e.g., iOS device). Finally,
we include three national-level Facebook features on adoption by gender and
gender gaps. For the full set of Facebook features used in our models, see SI
Appendix, Table S1.

Temporal Alignment of Features with Ground Truth. The DHS data we use
spanned the years 2015–2023, a period under which digital adoption increased.
To the extent possible, we temporally aligned our features with the year of our
ground truth observations as closely as possible. For instance, to align our
features temporally with ground truth from the 2018 Nigeria DHS, we calculate
the population-weighted nightlights feature for Nigeria using nightlights data
from 2018 and population data from 2018. When perfect temporal agreement
between feature and observed ground truth is not feasible, we used the closest
available year to the DHS survey year. For our Facebook features, we constructed
national-level features from our regular data collections spanning 2019–2025.
Since the Facebook Marketing API cannot retrieve historical MAU counts, we
linearly imputed national MAU counts back to 2015 to align temporally with
the year of our ground truth DHS surveys. Our subnational Facebook features
are based on ongoing collections beginning in April 2024. To achieve temporal
alignment, we rescaled the 2024 subnational MAU counts using an adjustment
factor, calculated as the ratio of the national MAU counts for the year of interest to
the national MAU counts in 2024 (seeSIAppendix, section 1 for details). To further
capture changes over time in our models, we include a feature corresponding
to the relative year a DHS survey was conducted.

Machine Learning Approach. We use a machine learning approach for
prediction. We predict each of the six indicators separately using both Facebook
and offline features. Flexible machine learning algorithms are appealing in this
setting because of their ability to detect interactions, model higher-order effects,
and better handle multiple, highly correlated predictors (34). Machine learning
approaches have been applied for similar prediction settings for LMICs, such as
for small-area estimation of wealth and poverty (21, 23).

We use ensemble Superlearning—also known as weighted ensembling or
stacking—a method for combining multiple machine learning algorithms into

*GADM, the Database of Global Administrative Areas, is a publicly available database of
country administrative areas. When boundaries are available in the Facebook Marketing
API that match the GADM-1 boundaries, we use the default Facebook boundaries. When
no boundary is available in the Facebook Marketing that matches the GADM-1 boundaries
(30%), we create custom shapefiles to match the GADM-1 boundaries.
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a single algorithm (35). The motivation behind ensemble Superlearning is
that a weighted combination of different algorithms may outperform any
single algorithm by smoothing out limitations of any specific algorithm. The
ensemble Superlearner algorithm selects the best weighted combination of
algorithms using a cross-validation procedure to minimize overfitting risk (36).
For our ensemble Superlearner, we use a library of widely used machine
learning algorithms: random forests, generalized linear regression, gradient
boosting machines, lasso regression, elastic net regression, polynomial splines
regression, ridge regression, and extreme gradient boosting machines (see SI
Appendix, Table S4 for a description of each algorithm and its weight toward the
final ensemble Superlearner algorithm).

In total, we model six different outcomes: adoption levels by gender and
gender gaps for both internet penetration and mobile phone ownership. We
also generate an accompanying estimate of uncertainty for each prediction
(SI Appendix, section 3B). For more detailed technical information on our
machine learning approach, see our completed REFORMS checklist (37), a
resource for promoting transparency and reproducibility in machine learning
science.

Estimating Trends. Using the temporally aligned features, we trained models
to predict digital adoption and gender gaps annually from 2015 to 2023 and
monthly from January 2024 onward. Temporal variation was captured through
year-specific features and the inclusion of a relative-year covariate. Because
our training data spans a wide time range and includes temporal alignment
of predictors, the model learns both spatial and temporal patterns in digital
adoption. This enables us to generate consistent time series of subnational
estimates, which we use to assess trends in adoption levels, gender gaps,
and within-country inequality over time. However, estimating and validating
trends remains inherently challenging due to limited temporal coverage of
ground truth surveys and the lack of standardized validation data across
years.

Cross-Validation. To evaluate the performance of our model, we use both
standard 10-fold cross-validation (10-fold CV) and leave-one-country-out cross-
validation (LOCO-CV). For 10-fold CV, we randomly split our sample into ten
separate folds. We trained our models on ninefolds and made predictions
on a single hold-out fold; we repeated this process for each fold. We use
the predictions on all held-out folds to estimate several model performance
metrics.

For LOCO-CV, we split the sample into 33 separate folds defined by country.
Holding out all subnational units in a given country (“hold-out partition”),
we fit our models on the rest of our dataset (“training partition”). We then
use our models to predict on the held-out subnational units of that country.
This process is iterated for each country in the dataset, ensuring that every
country’s subnational units serve as a hold-out set. We use the predictions on
all held-out units to estimate model performance metrics. By holding out data
from a single country during training, LOCO-CV tests the model’s capability
to handle intercountry variability and minimizes overfitting risks specific to
individual countries. LOCO-CV addresses concerns of geographical indepen-
dence, providing a more stringent assessment of the model’s geographical
robustness.

We use these two separate cross-validation designs as they provide different
perspectives. The LOCO-CV imitates a setting where we have no ground truth data
for an entire country, while standard cross-validation is helpful for approximating
how our model would perform in settings where ground truth data is available for
most, but not all, subnational regions in a country. In comparison to 10-fold CV,
LOCO-CV predictions show more conservative estimates of model performance
(SI Appendix, Fig. S21).

External Validation. To assess external validity and generalizability over
time, we benchmarked our predictions against 21 LSMS surveys (38) and 24
MICS surveys (39, 40), none of which were used in model training. Despite
differences in survey design, reference periods, and question wording, our
estimates aligned closely with observed values at the admin-1 level, showing
high correlations and low mean absolute errors. To evaluate each model’s
ability to capture temporal dynamics, we compare predicted and survey-based

changes in digital adoption using repeated surveys using DHS, MICS, and LSMS
within countries. Despite measurement limitations, the results indicate that
the model captures meaningful variation in change over time. Nonetheless,
we recommend caution when interpreting year-to-year changes for individual
admin-1 units, as our ability to rigorously validate these estimates is limited.
For a more detailed discussion and validation of trends, see SI Appendix,
section 3F.

PerformanceMetrics. We use several different model performance metrics to
evaluate model performance. First, we use R2, the coefficient of determination.
Given a set of observed values {y1, y2, . . . , yn} and a set of predicted values
{ŷ1, ŷ2, . . . , ŷn}, the R2 value is defined as

R2 = 1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

, [2]

where yi is the observed value for the ith observation, ŷi is the predicted value
for the ith observation, ȳ is the mean of the observed values, and n is the total
number of observations. TheR2 value, or coefficient of determination, quantifies
the proportion of variance in the dependent variable explained by the model.
An R2 value of 0 means the predictions are no better than using the mean of the
outcome, whereas a value of 1 signifies perfect predictions.

As an alternative metric for assessing model fit, we use MAE:

MAE =
1
n

n∑
i=1

|yi − ŷi|. [3]

The MAE provides an absolute measure of the average prediction error in the
dependent variable’s units, with a lower MAE indicating better model accuracy.
Using both R2 and MAE is advantageous: While R2 offers a relative measure of
fit, MAE yields a direct interpretation of prediction error magnitude and is more
robust to outliers.

Data, Materials, and Software Availability. Aggregated data at first ad-
ministrative level and code data have been deposited in Open Science
Framework (https://doi.org/10.17605/OSF.IO/5E8WF) (41) and GitHub (https://
github.com/OxfordDemSci/dgg_subnational).
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Supporting Information Text12

1. Feature and ground truth construction13

We used several different data sources to construct the features and ground truth measures of digital adoption for our modeling14

pipeline. A full list of features and ground truth outcomes is shown in Table S1. An overview of the processing steps taken to15

create different features is shown in Table S2.16

1A. Constructing Facebook features. We collected Facebook monthly active user (MAU) counts using the Facebook (Meta)17

Marketing API. This API, which is publicly accessible, is designed to provide advertisers with tools to help them advertise18

across Meta platforms. We used the “Ad Account Delivery Estimate” endpoint, which allows users to query MAU counts in a19

given location with specific attributes (e.g., gender, age, access device type, etc.). The Marketing API only provides current20

MAU counts and cannot be used to query MAU counts from the past.21

To systematically query the Facebook Marketing API, we used an adapted version of the publicly available pysocialwatcher22

package (1). This software automates repeated queries to the Facebook Marketing API based on a user-provided set of locations23

and attributes. To construct the Facebook features for our models, we collected MAU counts for each country and admin-124

region by gender (female and male) and access type (iOS, Wi-Fi, and 4G+ mobile network). We collected these data with a25

daily temporal resolution beginning in 2019 for national-level collections and April 2024 for admin-1-level collections.26

We used these MAU counts to construct several different features. First, we calculated overall subnational Facebook27

penetration features by gender by combining averaged MAU counts with current population estimates from Worldpop. Second,28

we used these penetration features to calculate the female to male ratio in Facebook penetration. Finally, we calculated the29

gender-specific fraction of overall users who access Facebook through different means (e.g., fraction of women who accessed30

Facebook through Wi-Fi). We construct these features both at the national and admin-1-level.31

Given the stable, positive trend in national-level MAU counts in most countries, we fit generalized linear models (GLM)32

with a log link and a linear trend to our national MAU counts from 2019 to 2024. We used these models to impute MAU33

counts back to 2015. To achieve temporal alignment for subnational features, we rescaled the April 2024 subnational MAU34

counts using an adjustment factor defined as the ratio of the national MAU count in a given period to the national MAU count35

in April 2024:36

MAUsubnational,year = MAUsubnational,2024 × MAUnational,year

MAUnational,2024︸ ︷︷ ︸
adjustment factor

. [1]37

The result is a longitudinal set of Facebook MAU counts from 2015 to the present at the admin-1 and national level. In our38

models, we use both the national-level and subnational-level features to capture both overall national adoption and subnational39

heterogeneity.40

The full set of Facebook features used in our model is shown in Table S1. We treat Facebook access method (e.g., WiFi,41

4G+, etc.) features as time invariant. We currently have ongoing daily collections at both the subnational and national level.42

We plan to update the models monthly to incorporate the most current Facebook features to predict contemporary levels and43

gaps in digital adoption (“nowcast”).44

1B. DHS processing. We calculated all ground truth estimates of internet and mobile adoption using DHS surveys. We45

restricted to DHS surveys between 2015 and 2023 that have digital adoption information available for both men and women.46

For most DHS surveys, the universe of eligible respondents is men and women aged 15–49. We exclude the 2018 Indonesia DHS47

survey, which only includes married men aged 25–54. In total, we used 33 DHS surveys corresponding to 1,568,617 interviews48

(Table S3).49

We used the GPS location of each DHS clusters to map individuals onto their corresponding admin-1 units. All DHS50

estimates of digital adoption were calculated using survey weights.51

1C. Offline features. The offline features were selected to ensure complete coverage across all LMICs. Additionally, we restricted52

to features that were measured consistently and harmonized across countries, which constrained the number of offline features53

included in the model. To construct population estimates by gender and age, we use data from Worldpop’s 1km X 1km54

unstructured grids (2). These data are available from 2015-2020. We calculated a population-density metric, which we55

standardized using Z-scores.56

We used a series of development and gender-equality indicators from the Global Data Lab (3). Specifically, we use indicators57

capturing human development, gender development, income, and education. We include human development and gender58

development features at both the national and subnational level to capture overall levels and deviations from national values.59

The nightlights data come from the Earth Observation Group (4, 5). We took the mean nightlights value within each60

subnational unit, and standardized it using Z-scores.61

1D. Handling missing values. We selected a parsimonious set of features to ensure broad coverage across LMICs. For the 52562

admin-1 units used to train our machine learning model, there were only 8 missing values, all for the gender development index63

in Guinea. In the full set of 2,075 subnational units, there were no missing values for our key Facebook features. For units with64

missing offline features (approximately 9% of subnational units), we imputed missing values for a feature using the nearest65
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available non-missing year. If no data from adjacent years were available, we used the median overall value of the continent the66

country was in.67

We do not make predictions for countries where no available Facebook MAU counts are available: American Samoa, China,68

Cuba, Fiji, French Southern Territories, Kosovo, Marshall Islands, Mayotte, North Korea, Papua New Guinea, Russia, Réunion,69

Saint Helena, Ascension, and Tristan da Cunha, Seychelles, Sudan, and Western Sahara.70

Variable Name Type Source Country (N) Subnational (N) Temporal Alignment
Used Internet Age 15-49 Women (%) Ground truth DHS 33 525 —
Owns Mobile Age 15-49 Wom (%) Ground truth DHS 33 525 —
Used Internet Age 15-49 Men (%) Ground truth DHS 33 525 —
Owns Mobile Age 15-49 Men (%) Ground truth DHS 33 525 —
Used Internet Age 15-49 FM Ratio (%) Ground truth DHS 33 525 —
Owns Mobile Age 15-49 FM Ratio (%) Ground truth DHS 33 525 —
Nightlight Mean Z-score Offline NASA Earth Observations 117 2075 Aligned to survey year
Population Density Z-score Offline Worldpop 117 2075 Aligned to survey year
Subnational Gender Development Index (GDI) Offline Subnational Dev. Database 117 2075 Aligned to survey year
Subnational Human Development Index (HDI) Men Offline Subnational Dev. Database 117 2075 Aligned to survey year
Subnational Human Development Index (HDI) Women Offline Subnational Dev. Database 117 2075 Aligned to survey year
Educational Index Females Offline Subnational Dev. Database 117 2075 Aligned to survey year
Educational Index Males Offline Subnational Dev. Database 117 2075 Aligned to survey year
Income Index Females Offline Subnational Dev. Database 117 2075 Aligned to survey year
Income Index Males Offline Subnational Dev. Database 117 2075 Aligned to survey year
Human Development Index (HDI) National Offline Subnational Dev. Database 117 2075 Aligned to survey year
Gender Development Index (GDI) National Offline Subnational Dev. Database 117 2075 Aligned to survey year
Continent Offline Constructed 117 2075 Static
Years since 2015 Offline Constructed 117 2075 Constructed relative to survey year
FB Penetration 13+ Male 2024 Facebook FB Marketing API 117 2075 Aligned to survey year
FB Penetration 13+ Female 2024 Facebook FB Marketing API 117 2075 Aligned to survey year
FB Age 18+ Gender Gap 2024 Facebook FB Marketing API 117 2075 Aligned to survey year
iOS Age 18+ Female Fraction 2024 Facebook FB Marketing API 117 2075 Aligned to survey year
iOS Age 18+ Male Fraction 2024 Facebook FB Marketing API 117 2075 Aligned to survey year
WiFi Age 18+ Female Fraction 2024 Facebook FB Marketing API 117 2075 Aligned to survey year
WiFi Age 18+ Male Fraction 2024 Facebook FB Marketing API 117 2075 Aligned to survey year
4G+ Age 18+ Female Fraction 2024 Facebook FB Marketing API 117 2075 Aligned to survey year
4G+ Age 18+ Male Fraction 2024 Facebook FB Marketing API 117 2075 Aligned to survey year
FB Penetration 18+ Male 2024 (National) Facebook FB Marketing API 117 2075 Aligned to survey year
FB Penetration 18+ Female 2024 (National) Facebook FB Marketing API 117 2075 Aligned to survey year
FB Age 18+ Gender Gap (National) Facebook FB Marketing API 117 2075 Aligned to survey year

Table S1. List of features and ground truth measures used in the analysis and their source. The temporal alignment column indicates how
each feature was aligned in time with the ground truth data.
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Data Data source Processing Steps

Ground truth estimates of digital adop-
tion

DHS Program 1. Map DHS clusters onto their corresponding admin-1 units using
GPS coordinates.
2. Calculate gender-specific, population-weighted measures of mo-
bile phone ownership and internet use (past 12 months). Then cal-
culate the digital gender gap indices at the admin-1-level.

Population estimates WorldPop 1. Obtain Worldpop estimates of population counts by sex and age
in each admin-1 unit.
2. Aggregate population counts to match the target population (age
15-49).
3. Calculate the population density.

Development indicators Global Data Lab 1. Match the Global Data Lab (GDL) units with the admin-1 units. For
matching, we first use exact name matching. If this fails, we perform
fuzzy name matching with manual verification. Finally, for units still
not matched, we perform geo-matching.
2. Calculate Global Data Labs (GDL) variables in each admin-1 unit.

Nightlight data Earth Observation Group 1. Resample the population raster data.
2. Average and weight the nightlight value in each admin-1 unit using
the population estimates from WorldPop.

Facebook monthly active user counts Facebook marketing API 1. Obtain monthly active user (MAU) counts by gender and device
type.
2. Construct population-weighted measures of Facebook adoption
by gender and device type using population estimates from World-
pop.

Table S2. Overview of data processing steps.
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Country Country Code Start Year End Year # Women # Men
Angola AO 2015 2016 14379 5684
Armenia AM 2015 2016 6116 2755
Benin BJ 2017 2018 15928 7595
Burkina Faso BF 2021 2021 17659 7720
Burundi BU 2016 2017 17269 7552
Cambodia KH 2021 2022 19496 8825
Cameroon CM 2018 2019 14677 6978
Côte d’Ivoire CI 2021 2021 14877 7591
Ethiopia ET 2008 2008 15683 12688
Gabon GA 2019 2021 11043 6894
Gambia GM 2019 2020 11865 4636
Guinea GN 2018 2018 10874 4117
Haiti HT 2016 2017 15513 9795
India IA 2019 2021 724115 101839
Kenya KE 2022 2022 32156 14453
Liberia LB 2019 2020 8065 4249
Madagascar MD 2021 2021 18869 9037
Malawi MW 2015 2016 24562 7478
Mali ML 2018 2018 10519 4618
Mauritania MR 2019 2021 15714 5673
Mozambique MZ 2022 2023 13183 5380
Nepal NP 2022 2022 14845 4913
Nigeria NG 2018 2018 41821 13311
Pakistan PK 2017 2018 15068 3691
Rwanda RW 2019 2020 14634 6513
Senegal SN 2019 2019 8649 3365
Sierra Leone SL 2019 2019 15574 7197
South Africa ZA 2016 2016 8514 3618
Tanzania TZ 2022 2022 15254 5763
Timor-Leste TL 2016 2016 12607 4622
Uganda UG 2016 2016 18506 5336
Zambia ZM 2018 2019 13683 12132
Zimbabwe ZW 2015 2015 9955 8396
Total 1,236,870 331,747

Table S3. The 33 DHS surveys used to construct ground truth estimates of digital adoption.

2. Sustainable development goals71

The United Nations sustainable development goals (SDG) are a set of 17 goals and targets to guide international development72

policy. Originally established in 2015, the SDGs were established to reduce poverty, hunger, AIDS, and discrimination against73

women and girls (6). Each sustainable development goal has a set of accompanying targets and indicators for tracking74

development. The estimates produced in this study most directly contribute to monitoring and tracking the following indicators:75

• Goal 5: Achieve gender equality and empower all women and girls76

– 5.b.1 Proportion of individuals who own a mobile telephone, by sex77

• Goal 4: Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all78

– 4.4.1 Proportion of youth and adults with information and communications technology (ICT) skills, by type of skill79

• Goal 17: Strengthen the means of implementation and revitalize the Global Partnership for Sustainable Development80

– 17.8.1 Proportion of individuals using the Internet81

A full list of sustainable development goals are available on the UN Website.82

3. Modeling83

3A. Superlearner weights. The set of machine learning algorithms included in our ensemble Superlearner models and their84

respective weights are presented in Table S4. Each algorithm’s weight represents its contribution to the overall ensemble85

Superlearner predictions. These weights are estimated using non-negative least squares regression; for more details on practical86

considerations of implementing a Superlearner, see Phillips et al. 2023 (7).87
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The algorithms that are most heavily weighted in our final ensemble models are random forest, gradient boosting machines88

(GBM), and ridge regression. The high weights on random forest and GBM suggest that tree-based models, well suited for89

capturing non-linear relationships and interactions, often perform best for these prediction tasks.90

Internet Mobile

Algorithm Description Women Men Ratio Women Men Ratio

glm Generalized Linear Model 0.00 0.00 0.00 0.00 0.00 0.00
lasso Lasso Regression 0.00 0.00 0.00 0.08 0.00 0.00
ridge Ridge Regression 0.62 0.45 0.59 0.37 0.06 0.31
elastic_new Elastic Net with 50% L1 Ratio 0.00 0.00 0.00 0.00 0.00 0.08
poly_spline Polynomial Spline 0.00 0.00 0.00 0.11 0.13 0.06
random forest Random Forest with 100 Trees 0.00 0.16 0.25 0.19 0.27 0.00
gbm Gradient Boosted Machine 0.18 0.40 0.12 0.25 0.54 0.54
xgb Extreme Gradient Boosting 0.22 0.00 0.03 0.00 0.00 0.00
SuperLearner Ensemble Model – – – – – –

Table S4. Full set of machine learning algorithms used in the Superlearner and their relative contribution to the final Superlearner model.

3B. Quantifying uncertainty. To estimate uncertainty for each subnational unit, we regressed the absolute residual against a set91

of all observable variables for each subnational unit with available auxiliary estimates from DHS surveys. This is a standard92

approach that has been used in past efforts using machine learning for small-area estimation (8). We used a non-negative93

least squares regression to ensure the resulting estimates are non-negative. We fit separate models by indicator to predict the94

absolute residual size for all subnational units. Qualitatively, our predicted absolute error is largest in high-adoption settings95

and smallest in low-adoption settings (Fig. S1). The relative error, defined as the absolute error divided by the predicted value,96

is largest in low-adoption settings.97
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Fig. S1. (A) The absolute predicted residual error in each subnational region. A value of 0.1 corresponds to 10 percentage points. (B) The relative predicted error, defined as
the absolute error divided by the predicted value, in each subnational region.
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3C. Bootstrap analysis of uncertainty in DHS ground truth. Our underlying ground truth data, which come from DHS surveys,98

are subject to sampling variability, especially at the admin-1 level. To understand how this uncertainty affects our analysis, we99

conduct a bootstrap analysis. Specifically, we repeatedly resample individual survey respondents with replacement within100

subnational units to create 10,000 synthetic bootstrap samples. We then compare our original estimates of digital adoption to101

the estimates from our 10,000 bootstrapped samples.102

This analysis quantifies the uncertainty in our digital adoption estimates due to sampling variability. As shown in Table S5,103

there is an upper bound on the R2 values attainable given the noise in the ground truth data. Notably, maximum R2 values are104

consistently lower for the survey-based gender gap index estimates than for overall adoption levels, reflecting higher sampling105

variation in the former.106

Category Q10 Q50 Q90 Mean

Mobile Women 0.930 0.982 0.996 0.966
Mobile Men 0.786 0.928 0.984 0.886
Mobile Gender Gap Index 0.687 0.908 0.981 0.843
Internet Women 0.960 0.988 0.997 0.981
Internet Men 0.919 0.974 0.993 0.963
Internet Gender Gap Index 0.407 0.843 0.959 0.709

Table S5. Percent of total variation explained (R2) from 10,000 bootstrap resamples

3D. Decomposing within and between country variance. To assess the relative contribution of within-country and between107

country variation to overall inequality, we used mean log deviation. Mean log deviation has appealing decomposability108

properties, and has been used elsewhere to quantify the additional inequality revealed at the subnational level (9). The mean109

log deviation (MLD) for all subnational units is defined as:110

MLD = 1
N

N∑
i=1

log
(
µ

ri

)
, [2]111

where N is the number of subnational units, µ is the overall mean rate (e.g., mean internet penetration rate), and ri is the rate112

for a given subnational unit i. The MLD can be decomposed into within-country and between-country components:113

MLD = MLDW + MLDB . [3]114

The overall mean rate µ can be expressed as:115

µ =
K∑

k=1

Nk

N
µk, [4]116

where K is the number of countries, Nk is the number of subnational units in country k, and µk is the mean rate for country k.117

The within-country MLD for each country k is:118

MLDk = 1
Nk

∑
i∈k

log
(
µk

ri

)
. [5]119

The overall within-country MLD is a weighted sum of the within-country MLDs:120

MLDW =
K∑

k=1

Nk

N
MLDk. [6]121

The between-country MLD is calculated based on the mean rates of the countries:122

MLDB =
K∑

k=1

Nk

N
log
(
µ

µk

)
. [7]123

The resulting estimates of MLDB and MLDk indicate how much of the total inequality in the rate (e.g., internet penetration124

rate) is due to within-country disparities versus between-country disparities.125
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3E. Validation against external estimates. To assess external validity, we benchmark our estimates against two independent126

survey-based sources of subnational digital adoption estimates: the Living Standards Measurement Study (LSMS) and the127

Multiple Indicator Cluster Surveys (MICS). None of these surveys were used in model training, allowing us to assess model128

performance against external ground truth. Comparisons between our model-based estimates and these external surveys are129

imperfect due to inconsistent question wording, differences in reference periods (e.g., internet use in the past 12 vs. past 3130

months), and sampling variation due to small sample sizes after subnational disaggregation (10). We benchmark against the131

MICS and LSMS surveys separately, addressing harmonization and comparability challenges specific to each.132

The Living Standards Measurement Study (LSMS) surveys are high-quality, nationally representative surveys conducted by133

the World Bank (11). Each survey captures detailed information on income, expenditures, demographics, health, and other134

socioeconomic indicators, such as digital adoption. The majority, but not all, surveys collect individual-level measures of mobile135

phone ownership and internet use. Each LSMS survey provides geographic identifiers that enable analysis at the admin-1 level.136

In total, we benchmark against 21 LSMS surveys at the admin-1 level, as listed in Table S6.137

Country Country Code Survey Year # Women (Internet) # Men (Internet) # Women (Mobile) # Men (Mobile)
Burkina Faso BFA 2018 10665 8751 10665 8751
Burkina Faso BFA 2021 11307 9297 11307 9297
Côte d’Ivoire CIV 2021 14723 13108 14723 13108
Ethiopia ETH 2021 0 0 2578 2908
Guinea-Bissau GNB 2018 10942 9615 10942 9615
Guinea-Bissau GNB 2021 10816 9841 10816 9841
Cambodia KHM 2019 0 0 1241 1104
Mali MLI 2018 9566 7996 9566 7996
Mali MLI 2021 9866 8399 9866 8399
Malawi MWI 2016 0 0 12223 10868
Malawi MWI 2019 0 0 11528 10404
Malawi MWI 2020 0 0 2211 2085
Niger NER 2018 7530 5978 7530 5978
Niger NER 2021 8565 6547 8565 6547
Nigeria NGA 2015 5696 5147 5702 5151
Nigeria NGA 2018 6366 5797 5201 5119
Nigeria NGA 2023 6548 6087 4884 4824
Senegal SEN 2018 16256 12718 16256 12718
Senegal SEN 2021 16340 12287 16340 12287
Togo TGO 2018 6370 5489 6370 5489
Togo TGO 2021 6667 5628 6667 5628
Total 158223 132685 185181 158117

Table S6. The 21 LSMS surveys used for external validation.

To measure mobile phone ownership, LSMS generally uses the same definition as our study (and DHS surveys): whether an138

individual personally owns a mobile phone. However, across LSMS surveys, definitions can vary subtly. For instance, in the139

Nigerian LSMS surveys, questions about mobile phone ownership are framed in terms of access to a mobile phone rather than140

explicit individual-level ownership. We exclude these surveys from our mobile phone benchmarking exercises. For internet141

adoption, the LSMS uses a slightly different measure: whether an individual has internet access. This contrasts with the142

definition used in our study (and DHS surveys) of whether an individual has used the internet in the past 12 months. Having143

access to the internet and having used the internet in the past 12 months are highly related yet distinct.144

To align with the age universe of our study and the DHS, we restrict LSMS respondents to those aged 15–49. To minimize145

noise due to sampling variation, we only present comparisons for subnational units with at least 150 relevant observations (e.g.,146

150 or more women when estimating mobile phone adoption among women).147

For background, we first compare DHS and LSMS estimates at the subnational level in countries where both surveys were148

conducted. As shown in Fig. S2, we see general agreement between the estimates of digital adoption. However, the LSMS149

surveys systematically underestimate the internet gender gap index relative to DHS surveys. This discrepancy likely stems from150

the surveys’ slightly different definitions of internet use: having access to the internet does not equate directly into internet use.151

Fig. S3 benchmarks our subnational estimates with those from the LSMS surveys. Our model-based estimates have strong152

overall agreement with the LSMS estimates. However, the LSMS surveys again systematically underestimate the internet153

gender gap relative to both our predictions. This mirrors the disagreement between the LSMS and DHS estimates.154

For background, we first compare DHS and LSMS estimates at the subnational level in countries where both surveys were155

conducted. As shown in Fig. S2, we see general agreement between estimates of digital adoption. However, the LSMS surveys156

systematically underestimate the internet gender gap index relative to DHS surveys. This discrepancy likely stems from the157

surveys’ slightly different definitions of internet use: having access to the internet does not equate directly into internet use.158

Figure S3 benchmarks our subnational estimates with those from the LSMS surveys. Our model-based estimates have strong159

overall agreement with the LSMS estimates. However, the LSMS surveys again systematically underestimate the internet160

gender gap relative to both our predictions. This mirrors the disagreement between the LSMS and DHS estimates.161
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Fig. S3 benchmarks our subnational estimates with those from the LSMS surveys. Our model-based estimates have strong162

overall agreement with the LSMS estimates. However, the LSMS surveys systematically underestimate the internet gender gap163

relative to both our predictions and ground truth from the DHS. This mirrors the disagreement between the LSMS and DHS164

estimates.165

Fig. S2. Comparison of DHS vs. LSMS estimates of adoption levels and gaps. The r denotes the Pearson correlation coefficient and MAE denotes mean absolute error.
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Fig. S3. Predicted values vs. observed out-of-sample values from LSMS surveys. All comparisons are at the admin-1 level.The r denotes the Pearson correlation coefficient
and MAE denotes mean absolute error.

Benchmark against MICS surveys The Multiple Indicator Cluster Surveys (MICS) surveys are global household surveys developed166

by UNICEF to collect internationally comparable data on health and well-being (12, 13). MICS Round 6 surveys generally167

collect individual-level information on internet use and mobile phone adoption. A subset of these surveys includes admin-1168

geographic identifiers, enabling subnational comparisons. We restrict the MICS surveys to the same age range as used in our169

study and in the DHS, men and women between age 15-49. The full set of 24 MICS surveys is shown in Table S7.170

Digital adoption is measured similarly across MICS and DHS (and our study), with nearly identical survey questions.171

However, MICS and DHS differ slightly in how they ask about internet use: MICS uses a 3-month recall window for internet172

use, while DHS (and this study) uses a 12-month recall window. To reconcile this, we constructed an adjustment factor that173

converts the 3-month estimates to the 12-month estimates. Using a subset of surveys that ask about internet usage in both the174

past 3 months and the past 12 months, we estimate a simple linear correction at the subnational level. Specifically, we adjust175

the 3-month estimates by 1.0153 to obtain the corresponding 12-month estimate.176
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Country Country Code Survey Year # Women (Internet) # Men (Internet) # Women (Mobile) # Men (Mobile)
Afghanistan AFG 2022 44341 0 44341 0
Benin BEN 2021 18436 7916 18436 7916
Bangladesh BGD 2019 64377 0 64377 0
Congo - Kinshasa COD 2017 21756 6113 21756 6113
Comoros COM 2022 6945 2850 6945 2850
Cuba CUB 2019 8849 3700 8843 3699
Guinea-Bissau GNB 2018 10946 2805 10945 2805
Guyana GUY 2019 5887 2214 5887 2212
Iraq IRQ 2018 30660 0 30660 0
Jamaica JAM 2022 4890 0 4889 0
Kyrgyzstan KGZ 2018 5742 0 5742 0
Kyrgyzstan KGZ 2023 5629 0 5629 0
Kiribati KIR 2020 4150 2083 4150 2083
Nigeria NGA 2021 38810 17347 38810 17347
Nauru NRU 2023 651 328 651 328
Sierra Leone SLE 2017 17873 7415 17873 7415
Suriname SUR 2018 7000 2828 6998 2827
Eswatini SWZ 2021 2007 1658 2007 1658
Turks & Caicos Islands TCA 2019 824 364 824 364
Chad TCD 2019 22564 6931 22567 6931
Turkmenistan TKM 2019 7558 0 7558 0
Tonga TON 2019 2903 1232 2903 1232
Vanuatu VUT 2023 3412 1389 3412 1389
Zimbabwe ZWE 2019 10130 4179 10130 4179
Total 346340 71352 346333 71348

Table S7. The 24 MICS surveys used for external validation.

In Fig. S4, we benchmark our admin-1 estimates against MICS estimates. Across six digital adoption indicators, we find177

strong agreement between our model-based estimates and the MICS estimates. In Fig. S5, we show subnational results for178

three Latin American countries—Guyana, Jamaica, and Suriname. Even in these higher-adoption settings in South and Central179

America, our estimates closely match the MICS ground truth.180
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Fig. S4. Comparison of admin-1-level estimates with independent ground truth data from Multiple Indicator Cluster Surveys (MICS).
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Fig. S5. Comparison of subnational-level estimates with independent ground truth data from Multiple Indicator Cluster Surveys (MICS) for three high-adoption countries in
Central and South America. The correlations are modest because of the limited variation in ground truth values, especially for the mobile and internet gender gap indices,
where most subnational estimates cluster near 1.0.

Finally, we benchmark at the national-level MICS indicators in Fig. S6. Our aggregated national-level predictions are181

highly correlated at the national-level with low mean absolute errors (MAE), indicating no systematic national-level over- or182

underestimation183
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Fig. S6. Comparison of national-level estimates with independent ground truth data from Multiple Indicator Cluster Surveys (MICS) for recent MICS surveys (2019 onwards).
MICS surveys are nationally representative, offering valuable independent estimates for comparison. National-level predictions are population-weighted averages of subnational
predictions.
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3F. Validation of trends. We conducted several analyses to validate our models’ ability to generalize across time and space and184

to capture trends in digital adoption. First, to assess temporal generalization, we examined trends in mean error and mean185

absolute error over time for each model. Our leave-one-country-out cross-validation (LOCO-CV) exercise shows no change in186

performance metrics over time (Fig. S7), indicating stable performance and no temporal bias. We replicate this analysis using187

external LSMS surveys in Fig. S8, again finding no evidence of temporal bias. These results support the ability of our models188

to generalize over time.189

Fig. S7. (A) Mean error, defined as the mean of the observed minus predicted values, by year and indicator, assessed using LOCO-CV. (B) Mean absolute error, defined as the
mean of the absolute difference between observed and predicted values, by year and indicator, also assessed using LOCO-CV. Dashed black lines represent the average error
(Panel A) and mean absolute error (Panel B) across all indicators and years.
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Fig. S8. Mean error, defined as the mean of the observed minus predicted values, by year and indicator, assessed using LSMS survey ground truth. (B) Mean absolute error,
defined as the mean of the absolute difference between observed and predicted values, by year and indicator, also assessed using LSMS survey ground truth.

As an additional validation exercise, we compare our model-based estimates of change over time to changes observed across190

repeated survey waves from DHS, MICS, and LSMS. Table S8 lists all countries with multiple survey waves included in this191

exercise. As discussed in Section 3E, differences in survey design and question wording, as well as small subnational sample192

sizes, limit the reliability of survey-based estimates of change over time. Due to these differences, we cannot treat survey-based193

estimates of change over time as ground truth in this setting in a straightforward way. Given these design differences, sampling194

variability, and the relatively short time windows, we expect only modest agreement between model-predicted and survey-based195

estimates.196

To illustrate, we compare our model-based estimates to survey-based estimates for Nigeria, a country where DHS, MICS,197
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and LSMS surveys were conducted after 2015. Fig. S9 plots survey-based estimates against our predicted estimates of internet198

adoption for women. Our estimated time trends largely align with the survey-based measures. In many cases, the model199

predictions align more closely with the survey-based estimates than the survey-based estimates do with each other. This200

highlights the noise inherent in survey-based estimates of change in digital adoption over time.201

Fig. S10 compares the change between the first and last available survey estimates to the corresponding model-predicted202

change at the admin-1 level. Across indicators, the correlation between predicted and survey-based change ranges from 0.21203

to 0.38. This moderate correlation is expected given the aforementioned noisiness of multi-year change from survey data.204

Differences in survey design, sampling variability, and short observation windows constrain the maximum attainable alignment205

between predicted and survey-based estimates of change over time at the subnational level. In some cases, the survey-based206

estimates indicate negative change, which likely reflects sampling variability rather than true declines in adoption. These207

results nonetheless suggest that the model is not merely reproducing static spatial patterns, but is instead learning meaningful208

temporal dynamics. In other words, the model is sensitive not only to where digital adoption is higher or lower, but also to209

how adoption is changing over time within specific subnational units.210

When multiple surveys were available in a given year, we prioritized DHS surveys. We excluded the 2015 LSMS survey in Nigeria due to its small sample size, and instead estimate change over time
using the 2018 Nigeria DHS survey and the 2023 Nigeria LSMS survey.
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Country Country Code Survey Year Source
Benin BEN 2017 DHS
Benin BEN 2021 MICS
Burkina Faso BFA 2018 LSMS
Burkina Faso BFA 2021 DHS
Burkina Faso BFA 2021 LSMS
Côte d’Ivoire CIV 2021 DHS
Côte d’Ivoire CIV 2021 LSMS
Ethiopia ETH 2016 DHS
Ethiopia ETH 2021 LSMS
Guinea-Bissau GNB 2018 LSMS
Guinea-Bissau GNB 2018 MICS
Guinea-Bissau GNB 2021 LSMS
Kyrgyzstan KGZ 2018 MICS
Kyrgyzstan KGZ 2023 MICS
Cambodia KHM 2019 LSMS
Cambodia KHM 2021 DHS
Mali MLI 2018 DHS
Mali MLI 2018 LSMS
Mali MLI 2021 LSMS
Malawi MWI 2015 DHS
Malawi MWI 2016 LSMS
Malawi MWI 2019 LSMS
Malawi MWI 2020 LSMS
Niger NER 2018 LSMS
Niger NER 2021 LSMS
Nigeria NGA 2015 LSMS
Nigeria NGA 2018 DHS
Nigeria NGA 2018 LSMS
Nigeria NGA 2021 MICS
Nigeria NGA 2023 LSMS
Nepal NPL 2016 DHS
Nepal NPL 2022 DHS
Philippines PHL 2017 DHS
Philippines PHL 2022 DHS
Senegal SEN 2017 DHS
Senegal SEN 2018 DHS
Senegal SEN 2018 LSMS
Senegal SEN 2019 DHS
Senegal SEN 2021 LSMS
Senegal SEN 2023 DHS
Sierra Leone SLE 2017 MICS
Sierra Leone SLE 2019 DHS
Togo TGO 2018 LSMS
Togo TGO 2021 LSMS
Tanzania TZA 2015 DHS
Tanzania TZA 2022 DHS
Zimbabwe ZWE 2015 DHS
Zimbabwe ZWE 2019 MICS

Table S8. Countries with repeated DHS, MICS, or LSMS surveys with information on individual-level digital adoption for women and men and
available admin-1 geographic identifiers.
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Fig. S9. For admin-1 units in Nigeria, the predicted internet adoption for women (blue line) vs. survey ground truth from DHS (2018), MICS (2021) and LSMS (2015, 2018,
2023). Survey-based estimates are only shown if the admin-1 unit has at least 150 women respondents for a given survey and year.
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Fig. S10. Survey-based estimates of change over time vs. our model predicted change over time in digital adoption across all countries with multiple survey waves (DHS, MICS,
LSMS). Each point represents a subnational (admin-1) unit. Analysis is restricted to units with at least 150 relevant observations in both surveys.
Note: We do not consider survey-based estimates of change over time to be reliable ground truth for benchmarking. Differences in survey design, sampling variability, and
short observation windows constrain the maximum attainable alignment. We include these comparisons to assess alignment despite known limitations, but caution against
overinterpretation: subnational estimates of multi-year change are subject to substantial noise. Low to moderate correlation is expected and does not reflect the models’ inability
to capture trends.
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Fig. S11. Survey-based estimates of change over time vs. predicted change over time in digital adoption for countries with multiple survey waves (DHS, MICS, LSMS). Analysis
is restricted to admin-1 units with over 150 relevant observations in both surveys.
Note: We do not consider survey-based estimates of change over time to be reliable ground truth for benchmarking. Differences in survey design, sampling variability, and
short observation windows constrain the maximum attainable alignment. We include these comparisons to assess alignment despite known limitations, but caution against
overinterpretation: subnational estimates of multi-year change are subject to substantial noise. Low to moderate correlation is expected and does not reflect the models’ inability
to capture trends.
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We further benchmark our estimates against those from the 2015 Tanzania DHS survey. Tanzania is a helpful case study for211

assessing trends as it has two different DHS surveys that measured digital adoption, the first in 2015 and the second in 2022.212

Our model only uses the most recently available survey year of 2022, allowing for an independent validation against the 2015213

estimates. As shown in Fig. S12, our model is able to produce accurate estimates for Tanzania in 2015.214

Fig. S12. Predicted vs. observed values for Tanzania in 2015. The 2015 Tanzania survey was not used to train the model, but we see high overall agreement between the
estimates of adoption in Tanzania.

3G. Validation of estimates of uncertainty. To validate our uncertainty, we compare our estimated predicted errors against215

our true observed errors in the LSMS surveys. Fig. S13 shows that across the seven LSMS surveys considered, our observed216

and predicted errors are largely consistent. Across all indicators, our average observed error (9.2) is very similar to, but217

slightly smaller than, our average predicted error (9.8). However, like all estimates of uncertainty, our estimates of uncertainty218

are inherently based on units where we have underlying ground truth data. In regions where ground truth is absent, our219

uncertainty estimates may not fully capture the true range of predictive errors. Additionally, our estimates assume that the220

relationships observed in the training data hold in unobserved areas, which may not always be the case due to spatial, temporal,221

or contextual differences. As a result, while our uncertainty estimates are well-calibrated where validation data exist, their222

reliability may decrease in areas with limited or no observational data.223

Prediction accuracy itself may vary across regions and indicators due to several factors. First, differences in data availability224

can impact model performance, as regions with sparse or less reliable data may introduce greater uncertainty. Second, regional225

heterogeneity in digital adoption patterns means that relationships between predictive features and outcomes may differ226

across contexts, affecting model generalizability. For example, the relationship between internet and Facebook usage can vary227

across contexts. Third, certain features may have stronger or weaker predictive power depending on local socioeconomic and228

infrastructural conditions. These factors contribute to variation in both absolute and relative error, influencing the overall229

accuracy of our estimates.230
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Fig. S13. The mean predicted error and observed error across seven different LSMS countries. Across all indicators, our observed average error (9.2) was slightly smaller than
our predicted average error (9.8).

4. Maps of subnational gender gaps and adoption levels231

Fig. S14. Estimates of gender gaps in internet use. Map displays estimates from January 2025.
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Fig. S15. Estimates of internet adoption for women. Map displays estimates from January 2025.
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Fig. S16. Estimates of internet adoption for men. Map displays estimates from January 2025.
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Fig. S17. Estimates of gender gaps in mobile phone ownership. Map displays estimates from January 2025.
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Fig. S18. Estimates of mobile phone adoption for women. Map displays estimates from January 2025.
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Fig. S19. Estimates of mobile phone adoption for men. Map displays estimates from January 2025.

Casey F. Breen, Masoomali Fatehkia, Jiani Yan, Xinyi Zhao, Douglas R. Leasure, Ingmar Weber, and Ridhi Kashyap 29 of 47



5. Additional results232

Fig. S20. The top 10 countries with the largest spreads between their lowest and highest subnational unit by gender and digital indicator, organized in descending order by gap
size. The bottom bar shows the average top-bottom subnational spread across all countries.
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Fig. S21. Scatterplot of observed vs. predicted values under 10-fold cross-validation (10-fold CV) and leave-one-country-out cross-validation (LOCO–CV).
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Fig. S22. Performance by algorithm, as measured by R2 (coefficient of determination) under 10-fold cross-validation (10-fold-CV) and leave-one-country-out cross-validation
(LOCO–CV).
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Fig. S23. Scatterplot of observed vs. predicted mobile phone ownership for women by country.
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Fig. S24. Scatterplot of observed vs. predicted mobile phone ownership for men by country.
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Fig. S25. Scatterplot of observed vs. predicted mobile phone ownership gender gap index by country.
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Fig. S26. Scatterplot of observed vs. predicted internet adoption for women by country.
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Fig. S27. Scatterplot of observed vs. predicted internet adoption for men by country.
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Fig. S28. Scatterplot of observed vs. predicted internet adoption gender gap index by country.
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Fig. S29. Relationship between national-level estimates and the within-country spread between the top and bottom region for our six outcomes of interest. Labels show the
ISO-3 country codes.
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Fig. S30. (A) Comparison of predicted internet adoption and mobile phone adoption for women. (B) Comparison of predicted internet adoption and mobile phone adoption for
men. (C) Comparison of predicted internet gender gap index and predicted mobile gender gap index.
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Fig. S31. The residual (observed - predicted) from leave-one-country-out cross-validation (LOCO-CV) for all subnational regions with available ground truth data by indicator.
Red dashed line shows mean of residual values.
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Fig. S32. Feature importance by indicator. Top 10 features are shown. Feature importance is calculated as the R2 value from a univariate regression.

Fig. S33. Predicted vs. observed value for female internet adoption, disaggregated by year. Predictions are based on leave-one-country-out cross-validation (LOCO-CV).
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Fig. S34. Predicted vs. observed values, demeaned by country. Predictions are based on leave-one-country-out cross-validation (LOCO-CV).

Casey F. Breen, Masoomali Fatehkia, Jiani Yan, Xinyi Zhao, Douglas R. Leasure, Ingmar Weber, and Ridhi Kashyap 43 of 47



6. REFORMS Checklist233

The REFORMS checklist, developed collaboratively by 19 researchers across the social, computer, and physical sciences, is234

a resource for promoting transparency and reproducibility in machine learning science (14). We complete this checklist to235

promote methodological transparency.236

6A. Study Goals.237

1a. State the population or distribution about which the scientific claim is made.238

This study makes scientific claims about levels and gaps of digital adoption in 2,075 subnational regions across 117239

different low- and middle-income countries (LMICs) over the period 2015 through 2025.240

1b. Describe the motivation for choosing this population or distribution.241

We focus on LMICs settings as overall levels of digital penetration are low and gender gaps disfavoring women are high.242

We focus on the first subnational level as subnational variation represents a substantial component of overall inequality,243

especially in countries with the lowest levels of development.244

1c. Describe the motivation for the use of ML methods in the study.245

We use machine learning methods to predict levels and gaps of internet adoption and mobile phone ownership by gender.246

Machine learning is an appropriate choice for this task because our primary focus is on predictive accuracy rather than247

model interpretation. Additionally, machine learning algorithms are better suited for handling the complex interactions248

and non-linear relationships among features. Given that we are interested in estimating trends in digital adoption over249

time, machine learning models are helpful in their flexibility to capture temporal trends and year-specific shifts in adoption250

patterns.251

6B. Computational Reproducibility.252

2a. Describe the dataset used for training and evaluating the model and provide a link or DOI to uniquely identify the dataset.253

The dataset used to train and evaluate the model contains columns corresponding to model features or outcomes and254

rows corresponding to different subnational units for each year from 2015 through 2025. The dataset is available from:255

https://doi.org/10.17605/OSF.IO/5E8WF. For more information on how each feature was constructed, see Section 1.256

2b. Provide details about the code used to train and evaluate the model and produce the results reported in the paper along with257

link or DOI to uniquely identify the version of the code used.258

To train our machine learning algorithms, we used an ensemble Superlearner (7). We first fit separate models for each259

of our six outcomes separately using the SL3 package in R (15). All code to train these models is available in our260

replication package: https://doi.org/10.17605/OSF.IO/5E8WF.261

2c. Describe the computing infrastructure used.262

All computations were carried out on 2023 MacBook Pro with an Apple M2 Pro chip, 16GB memory, and Sonoma 14.1263

operating system. We use R version 4.3.1 and package versions recorded in the README file of the replication package.264

2d. Provide a README file which contains instructions for generating the results using the provided dataset and code.265

A README file containing instructions for generating all estimates, figures, and tables presented in the paper is available266

from: https://doi.org/10.17605/OSF.IO/5E8WF.267

2e. Provide a reproduction script to produce all results reported in the paper.268

The replication scripts for generating all figures and code in the paper are available here: https://doi.org/10.17605/OSF.IO/5E8WF269

6C. Data Quality.270

3a. Describe source(s) of data, separately for the training and evaluation datasets, along with the time when the dataset(s) are271

collected, the source and process of ground-truth annotations, and other data documentation.272

The data for this study come from several different sources. First, our ground truth data came from a series of 33273

Demographic and Health Surveys (DHS). The survey datasets were obtained directly from the DHS Program’s website274

on March 1, 2024. To construct our features, we combine data from the following sources: Worldpop, NASA Earth275

Observation Group, Global Data Lab, and the Facebook Marketing API. For more details on data processing, see276

Section 1.277

In addition, we used data two auxiliary sources for validation: Multiple Indicator Cluster Surveys (MICS) and LSMS278

(Living Standards Measurement Study). These data were obtained in May 2025.279

44 of 47 Casey F. Breen, Masoomali Fatehkia, Jiani Yan, Xinyi Zhao, Douglas R. Leasure, Ingmar Weber, and Ridhi Kashyap

https://doi.org/10.17605/OSF.IO/5E8WF
https://doi.org/10.17605/OSF.IO/5E8WF
https://doi.org/10.17605/OSF.IO/5E8WF
https://doi.org/10.17605/OSF.IO/5E8WF


3b. State the distribution or set from which the dataset is sampled (i.e., the sampling frame).280

The dataset used for our analysis is structured where each observation (row) corresponds to a different subnational unit281

by year. Each feature (column) corresponds to a characteristic of a subnational unit. The ground truth rates of digital282

adoption in the dataset are calculated based on microdata from DHS surveys, which typically use a stratified two-stage283

cluster design (16).284

All features are temporally aligned to their respective year, effectively creating a longitudinal panel spanning 2015–2025.285

3c. Justify why the dataset is useful for the modeling task at hand.286

This dataset is appropriate for modeling subnational levels and gaps of internet and mobile phone adoption as it includes,287

at the admin-1 level, both ground truth measures of digital adoption and a carefully curated set of predictors associated288

with digital adoption and gaps.289

6D. Data Pre-processing.290

4a. Describe whether any samples are excluded with a rationale for why they are excluded.291

We only make predictions for LMICs where Facebook MAU data is available. No Facebook MAU counts are available292

for the following countries: American Samoa, China, Cuba, Fiji, French Southern Territories, Kosovo, Marshall Islands,293

Mayotte, North Korea, Papua New Guinea, Russia, Réunion, Saint Helena, Ascension, and Tristan da Cunha, Seychelles,294

Sudan, Western Sahara.295

4b. Describe how impossible or corrupt samples are dealt with.296

There are no impossible or corrupt samples.297

4c. Describe all transformations of the dataset from its raw form to the form used in the model, for instance, treatment of298

missing data and normalization—preferably through a flow chart.299

For most subnational units in our analysis, we have no missing predictors. When data is missing, we impute using the300

value from nearest non-missing year within that subnational unit. If data is missing for a feature for all years, we use the301

median value within the continent. An overview of data processing is available in Section 1.302

6E. Modeling.303

5a. Describe, in detail, all models trained.304

We fit six different ensemble Superlearner models, one for each outcome of interest. Each ensemble Superlearner algorithm305

combines multiple predictions from a library of individual machine learning algorithms. Specifically, we include the306

following individual machine learning algorithms in our ensemble library:307

• Generalized Linear Model (GLM)308

• Lasso Regression309

• Ridge Regression310

• Elastic Net Regression311

• Polynomial Spline Regression312

• Random Forests313

• Gradient Boosted Machine (GBM)314

• Extreme Gradient Boosting (XGB)315

Temporal variation was captured through year-specific features and the inclusion of a relative-year covariate, allowing the316

model to learn both spatial and temporal patterns in adoption.317

5b. Justify the choice of model types implemented.318

We chose to use an ensemble Superlearner model to enhance predictive accuracy by leveraging the strengths and smoothing319

over limitations of each individual model. The choice of individual machine learning algorithms was driven by their320

ability to handle various data characteristics, such as non-linear relationships, interactions, and high-dimensional data.321

We selected a diverse set of machine learning algorithms for our ensemble library to capture a wide range of data322

characteristics, including non-linear relationships, interactions, and high-dimensional features.323

5c. Describe the method for evaluating the model(s) reported in the paper, including details of train-test splits or cross-validation324

folds. The models were evaluated using two types of cross-validation:325

• 10-fold cross-validation: The data were randomly split into ten folds, with nine folds used for training and one326

for testing, repeated for each fold. This gives a sense of how the model would perform for countries with subnational327

ground truth estimates of adoption available for sum, but not all, admin-1 units.328
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• Leave-one-country-out cross-validation (LOCO-CV): Data from one country were held out at a time, the329

model was trained on the remaining countries, and predictions were made for the subnational units in the held-out330

country. This process was repeated for each country, ensuring that no data from the test country influenced the331

training. This strategy is more conservative, and gives insight into how the model would perform on a country332

where we have some subnational ground truth estimates of adoption.333

We further evaluated the models by benchmarking against external estimates from MICS and LSMS surveys. This allows334

us to assess the performance of the model against independent estimates. To evaluate the models’ ability to capture335

trends over time, we use countries with repeated surveys (from DHS, MICS, and LSMS) to compare our predicted change336

over time with observed changes over time, with the caveat that observed changes over time may reflect true change337

or artifacts of sampling variation and survey inconsistencies. Overall, our results demonstrate that our models capture338

changes in adoption reasonably well.339

5d. Describe the method for selecting the model(s) reported in the paper.340

We report both the performance of the ensemble Superlearner algorithms and the individual machine learning algorithms341

in Fig. S22. However, in the main text, we only show predictions from our best-performing Superlearner algorithms.342

The ensemble Superlearner algorithm is a weighted combination of predictions from each individual machine learning343

algorithm, and has the best overall performance across all indicators. Weights are calculated using a non-negative least344

squares (NNLS) regression meta-learner and shown in Section 3A.345

5e. For the model(s) reported in the paper, specify details about the hyperparameter tuning.346

Hyperparameter tuning was performed ad-hoc for each individual model within the Superlearner framework using347

cross-validation. Specific tuning processes were applied as follows:348

• Random forests: Number of trees349

• Gradient boosting machines: Learning rate, number of trees, and tree depth350

5f. Justify that model comparisons are against appropriate baselines.351

Our model baseline is a generalized linear model (GLM), fit within our Superlearner framework. This simple model is a352

standard and appropriate baseline that allows us to assess the performance of our ensemble superlearner algorithm.353

6F. Data Leakage.354

6a. Justify that pre-processing and modeling steps only use information from the training dataset (and not the test dataset).355

Pre-processing and modeling steps were strictly limited to using information from the training dataset. The LOCO-CV356

approach ensured that no data from the test countries were included in the training process, maintaining strict data357

separation.358

6b. Describe methods used to address dependencies or duplicates between the training and test datasets.359

Dependencies and duplicates were managed by ensuring that each country’s data were treated independently during the360

LOCO-CV process. This approach inherently avoids any overlap or dependencies between training and test datasets.361

6c. Justify that each feature or input used in the model is legitimate for the task at hand and does not lead to leakage.362

All features used in our models were carefully selected to avoid data leakage. None of the features in our models are363

proxies for the outcome, and were all measured independently of the outcomes.364

6G. Metrics and Uncertainty.365

7a. State all metrics used to assess and compare model performance. Justify that the metric used to select the final model is366

suitable for the task.367

For our primary model performance metric, we use the coefficient of determination, R2. This metric is valuable because368

it quantifies the proportion of variance in the dependent variable explained by the model, providing an absolute measure369

of model fit. Additionally, we use the mean absolute error (MAE) to assess the average magnitude of prediction errors,370

offering a direct interpretation of prediction accuracy in the units of the dependent variable. Finally, we use the Pearson371

correlation coefficient (r), which measures the linear correlation between observed and predicted values, showing how well372

the predicted values follow the trend of the observed ground truth data. These metrics collectively ensure a comprehensive373

evaluation of the model’s performance, capturing both fit quality and prediction accuracy.374

7b. State uncertainty estimates and give details of how these are calculated.375

To estimate uncertainty for each subnational unit, we regress the absolute residuals against all observable variables for376

units with ground truth data. We use non-negative least squares regression to ensure estimated absolute residuals are377

positive. We then use this model to predict the absolute residual size for all subnational units.378

7c. Justify the choice of statistical tests (if used) and a check for the assumptions of the statistical test.379

We do not conduct any statistical tests.380
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6H. Generalizability and Limitations.381

8a. Describe evidence of external validity.382

Our models are calibrated using ground truth data from DHS surveys. It is possible that countries that do not have DHS383

surveys differ in important ways from the countries that do have DHS surveys. Given the availability of ground truth384

coverage from 33 different countries, this is unlikely to drastically affect our external validity. Further, comparison with385

independent ground truth estimates of digital adoption from LSMS surveys and MICs surveys at the subnational-level386

revealed strong agreement in countries with no DHS surveys.387

8b. Describe contexts in which the authors do not expect the study’s findings to hold.388

In settings where digital adoption is especially high, the relationship between Facebook use and internet use might be389

more heterogeneous. Our models’ performance in high-adoption settings is still reasonably accurate, but it performs best390

at estimating internet adoption levels in lower penetration settings. This is reflected in the higher uncertainty estimates391

in high-adoption settings.392

In addition, if the correlation between Facebook penetration and digital adoption weakens in the future, the effectiveness393

of our methods may decline. However, the rise of other social media platforms could provide alternative or complementary394

data sources, if these user counts become publicly available.395

Finally, estimating trends in digital adoption over time is inherently challenging. Our validation exercises show promising396

alignment between estimated and observed trends, especially given data limitations. However, more reliable ground truth397

estimates of trends over time would allow for more rigorous validation and would strengthen confidence in the models’398

ability to capture temporal dynamics.399
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