

Mapping subnational gender gaps in internet and mobile adoption using social media data

Casey F. Breen^{a,b,c,d,1} (6), Masoomali Fatehkia^e (6), Jiani Yan^{a,c}, Xinyi Zhao^{a,c,f} (6), Douglas R. Leasure^{b,c} (6), Ingmar Weber^g, and Ridhi Kashyap^{a,b,c,1} (6)

Affiliations are included on p. 10.

Edited by Joshua E. Blumenstock, University of California, Berkeley, CA; received August 15, 2024; accepted September 8, 2025 by Editorial Board Member Paul DiMaggio

The digital revolution has ushered in many societal and economic benefits. Yet access to digital technologies such as mobile phones and internet remains highly unequal, especially by gender in the context of low- and middle-income countries (LMICs). While national-level estimates are increasingly available for many countries, reliable, quantitative estimates of digital gender inequalities at the subnational level are lacking. These estimates, however, are essential for monitoring gaps within countries and implementing targeted interventions within the global sustainable development goals, which emphasize the need to close inequalities both between and within countries. We develop estimates of internet and mobile adoption by gender and digital gender gaps at the subnational level for 2,075 regions in 117 LMICs from 2015 through 2025, a context where digital penetration is low and national-level gender gaps disfavoring women are large. We construct these estimates by applying machinelearning algorithms to Facebook user counts, geospatial data, development indicators, and population composition data. We calibrate and assess the performance of these algorithms using ground-truth data from subnationally representative household survey data from 33 LMICs. Our results reveal striking disparities in access to mobile and internet technologies between and within LMICs. These disparities imply that as of 2025, women are 19% less likely to use the internet and 8% less likely to own a mobile phone in LMICs, corresponding to over 190 million fewer women owning a mobile phone and over 320 million fewer women using the internet.

digital adoption | sustainable development | machine learning | low- and middle-income countries | gender inequality

The digital revolution has yielded major societal and economic benefits in low- and middle-income country (LMIC) settings. Internet and mobile technologies are powerful mediums for boosting social connectivity (1, 2), promoting social learning, and providing access to new information channels (3, 4). Increasing digital adoption has generated "digital dividends," such as job creation (5), better educational outcomes (6), and improved economic growth (7). From a gender perspective, digital technologies have the potential to empower women across many domains and reduce gender inequalities by providing access to information, networks, and vital services that lead to higher contraceptive uptake (8), increased labor market and economic opportunities (9-12), and improved child and maternal health (8, 13-15). The benefits of digital technology are generally greatest in the most unequal, disadvantaged regions (8).

Yet the global spread of digital technologies has been uneven. Over 2.6 billion people have never accessed the internet, and the majority of the unconnected are women and girls (16). This digital divide by gender is an increasingly salient dimension of contemporary population inequality and is especially pronounced in LMICs. Reliable quantitative estimates of digital gender inequalities are essential for tracking progress on and implementing targeted policies and interventions in the context of the global sustainable development goals (SDGs). Reducing inequalities in access to digital technologies by gender is a target within SDG 5 on gender equality, while digital literacy is a core part of SDG 4 on the right to education.

Gender-disaggregated data on digital adoption in LMIC settings are significantly lacking. While the availability of national-level estimates of digital gender gaps has improved (16-18), to date there are no subnational estimates of digital adoption by gender for the majority of LMICs in the world. Past estimates of digital adoption have typically been based on probabilistic household surveys (19, 20), which generally either lack gender disaggregation or are underpowered for subnational analyses. Even

Significance

Reliable estimates of digital adoption by gender are essential for tracking progress on global sustainable development targets, such as the United Nations Sustainable Development Goal 5 on gender equality. We construct subnational estimates of internet and mobile adoption by gender, including gender gaps, for 117 low- and middle- income countries from 2015 through 2025. Our estimates show that for women in the least developed countries, as measured by the Human Development Index, more than 40% of total inequality in internet use arises from within-country differences. We validate our estimates and provide accompanying uncertainty estimates. Our estimates provide a valuable resource for researchers and policymakers to monitor digital gender gaps and track progress toward sustainable development goals in real time.

The authors declare no competing interest.

This article is a PNAS Direct Submission. J.E.B. is a guest editor invited by the Editorial Board.

Copyright © 2025 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).

PNAS policy is to publish maps as provided by the

¹To whom correspondence may be addressed. Email: casey.breen@austin.utexas.edu or ridhi.kashyap@ nuffield.ox.ac.uk.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas. 2416624122/-/DCSupplemental.

Published October 14, 2025.

when high-quality, subnationally representative data are available, they quickly become outdated in the context of a rapidly evolving technological landscape. In other contexts, such as poverty (21, 22), wealth (23), and population mapping (24), "big data" derived from satellite, social media, and mobile phone records have been used to overcome data gaps in surveybased approaches. The potential of nontraditional sources for mapping gender inequality indicators at subnational geographical resolution has yet to be explored.

Subnational estimates are critical because internet and mobile phone adoption can vary substantially within countries. This mirrors patterns in economic and educational development, which also show high subnational heterogeneity (25). These subnational inequalities in human development are often largest at low levels of human development and also substantial at middle levels. When taking subnational variation into account, inequalities in human development among LMICs are approximately double those when only accounting for national-level variation (25). Moreover, factors associated with digital adoption for women and men can differ, as economic development does not necessarily weaken gender inequalities and facilitate women's empowerment linearly (26). As development programs are increasingly deployed through digital means, and are often targeted in local geographies, subnational estimates are critical to monitoring their progress and understanding how digital inequalities affect sustainable development.

Here, we introduce an approach to estimating subnational digital adoption and gender gaps by applying machine learning algorithms to social media data, big geospatial data, and development indicators. We focus on internet adoption, defined as having used the internet in the past 12 mo, and mobile phone ownership, defined as having personal ownership of a mobile phone. We train and assess the performance of these algorithms using "ground truth" data from subnationally representative Demographic and Health Surveys (DHS) from 525 regions across 33 LMICs. We use this approach to estimate digital adoption at the first subnational administrative level (admin-1) for 2,075 regions in 117 LMICs where sufficient data are available to make estimates. To facilitate the study of trends in digital adoption and inequality over time, we produce annual estimates from 2015 to 2023, and monthly estimates beginning in 2024 through the present day. These estimates are provided freely alongside this study and will be publicly available and updated on a monthly basis on an interactive web dashboard www.digitalgendergaps.org.

Results

Our general approach is illustrated in Fig. 1. We use surveybased indicators of internet usage and mobile phone ownership for men and women combined with a set of satellite-based geospatial data, development indicators, and social media user count data to train a machine learning model. The social media data we use are Facebook monthly active user counts by gender obtained from the public Facebook Marketing API. The availability of 33 recent DHS surveys (Fig. 1A) provides us good coverage of ground truth data on internet and mobile adoption by gender and digital gender gaps to calibrate and assess our models. We temporally align our predictive features to the year of the DHS survey. The near global coverage and more timely, higher-frequency availability of the geospatial and social media features provides a basis for extrapolation to locations without DHS data. Using this approach, we expand our geographical and temporal coverage of digital adoption estimates

to 2,075 regions in 117 LMICs across the globe from 2015 to the

We focus on LMICs as national-level adoption in these settings is low, digital gender gaps disfavoring women are large (17, 18), and gender-disaggregated data at finer geographical resolution on digital adoption are limited. Our results reveal large disparities in digital adoption between and within countries and demonstrate the promise of this method for real-time monitoring of global SDGs.

Evaluating Predictive Accuracy. To assess the predictive accuracy of our machine learning models, we employ three validation strategies: 1) leave-one-country-out cross-validation (LOCO-CV), 2) conventional 10-fold cross-validation, and 3) external benchmarking against independent surveys from the Living Standards Measurement Study (LSMS) and the Multiple Indicator Cluster Survey (MICS) program. Together, these methods help validate our approach and provide evidence of the external validity of our estimates outside of countries where DHS ground truth data are available.

To assess the performance of our estimates using LOCO-CV, we hold out all data from one country at a time. We train our model on ground truth data from all countries not withheld, then make predictions for each subnational unit in the hold-out country. This process is repeated for each country. The resulting estimates give insight into how we would expect the model to perform in countries without ground truth data.

LOCO-CV is a contrasting and more stringent approach to standard 10-fold cross-validation, where one fold (one-tenth) of the dataset is left out at a time instead of an entire country. Leaving out an entire country prevents any data from that country from influencing the training process. The 10-fold crossvalidation gives insight into performance in countries where survey data are available in many, but not all areas. In contrast, LOCO-CV imitates a setting where no ground truth data are available for any subnational units in a given country. As over 80 LMICs have no ground truth data on digital adoption at the admin-1 level, we consider this a more conservative and realistic evaluation of model performance.

Fig. 2 plots our model-based predicted values against our observed ground truth values across all subnational units for the different indicators of internet and mobile adoption by gender, and the gender gap indices (female-to-male ratio) of both. Maps visualizing predicted values of all indicators are shown in SI Appendix, section 4. To quantify the agreement between our predictions and ground truth, we report the coefficient of determination (R^2) , the Pearson correlation coefficient (r), and the mean absolute error (MAE). The coefficient of determination (R^2) represents the proportion of total variation in the dependent variable that is predictable from the independent variable, and the MAE reports the average absolute difference between the predicted and observed values.

Our predictions align closely with the ground truth where these are available. On average, our predictions are better for women's internet adoption than men's. Our predictive accuracy is lower for our estimates of gender gaps. This likely reflects a combination of more noise in the underlying ground truth data (for more details, see SI Appendix, section 3C) and overall weaker relationship between our predictive features and digital gender gaps compared to digital adoption levels (SI Appendix, Fig. S32). In addition to material gender inequalities, which we are better able to measure in our feature set through indicators linked to income and education, gender gaps may reflect social norms, which are generally more challenging to measure in these settings.

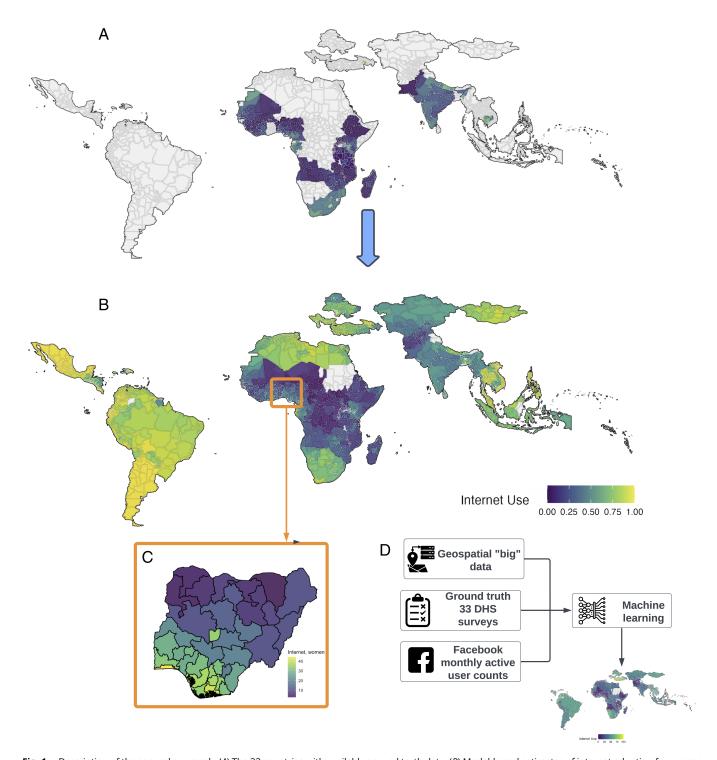


Fig. 1. Description of the general approach. (*A*) The 33 countries with available ground truth data. (*B*) Model-based estimates of internet adoption for women across 117 countries for January 2025. (*C*) Enlargement of estimates for Nigeria. (*D*) Illustration of inputs to the machine learning models for predicting digital adoption indicators.

As an additional validation exercise, we benchmark our estimates against the LSMS surveys—high-quality, subnationally representative surveys fielded by the World Bank. Despite using slightly different definitions of digital adoption than the DHS, our estimates show strong agreement with LSMS estimates at the admin-1 level (*SI Appendix*, Fig. S3). We also benchmark against MICS surveys at the admin-1 level (*SI Appendix*, Fig. S4), finding close alignment even in high-adoption settings in Central and South America.

Through temporally aligning our features with the year of the DHS, the model learns from both spatial and temporal variation. Even though the DHS are fielded at different time points, our models predict accurately across the span of 2015 to 2022 (see *SI Appendix*, section 3F for details). This suggests that our model generalizes well across time and space. Direct validation of temporal trends is constrained by data availability and differences in survey design, question wording, and sample sizes across surveys. Despite these constraints, we conduct analyses using DHS,

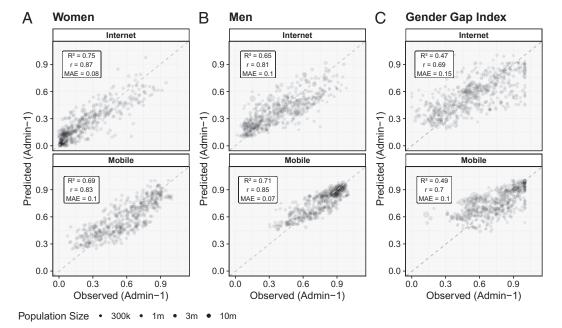


Fig. 2. Summary of model performance using leave-one-country-out cross-validation (LOCO-CV). (*A*) Scatterplot of predicted vs. observed subnational values for internet adoption and mobile phone ownership for women. (*B*) Scatterplot of predicted vs. observed subnational values for mobile phone ownership and internet penetration for men. (*C*) Scatterplot of predicted vs. observed subnational values of the gender gap index (female-to-male ratio) for internet and mobile phone adoption. The *R*² values report the coefficient of determination, the *r* values report the Pearson Correlation Coefficient, and MAE values report mean absolute error.

MICS, and LSMS surveys for the limited number of countries where multiple waves are available. As shown in *SI Appendix*, Fig. S10, the correlations between our predicted and survey-based estimates of change over time range from 0.21 to 0.38. We report these correlations to assess alignment despite known limitations, but caution against overinterpretation: Subnational estimates of multiyear change from different surveys are subject to substantial noise. Low to moderate correlation is expected and does not necessarily reflect the models' inability to capture trends.

The variance of the predicted changes in adoption over time shown in *SI Appendix*, Fig. S10 is far more attenuated than the variance of survey-based estimates of changes in adoption over time. Further, survey-based estimates show declines in adoption over time for some subnational units that our models do not predict. Given current limitations in the availability of consistent surveys over time and small sample sizes, it is difficult to ascertain to what extent these differences reflect model performance or inconsistencies in survey-based estimates arising from differing definitions and sampling variability.

For all estimates, we calculate a corresponding estimate of model error (*SI Appendix*, section 3B). We do this by regressing the absolute value of the residual (model error) against the set of all observable features, following (23). This model is then used to calculate an estimate of model error for each subnational unit. Our predicted model error is smallest in low-adoption settings, indicating our approach is able to identify areas that are lagging behind

Within-Country Results. Fig. 3 illustrates within-country variation in women's internet adoption using three examples from the African continent. These countries exhibit low overall internet penetration rates, substantial heterogeneity across admin-1 units, and ongoing collective efforts to enhance internet accessibility and quality (e.g., the Zimbabwe National Broadband Plan). Reliable and timely estimates of digital adoption are crucial for assessing the impact and effectiveness of these initiatives.

In Nigeria, 55% of women in the relatively affluent and urban southwestern state of Lagos had accessed the internet in the past 12 mo, while less than 1% of women had accessed the internet in the rural northern state of Kebbi as of 2018 (Fig. 3*A*), highlighting the magnitude of within-country heterogeneity. Within Nigeria, the model-based estimates align closely with the observed DHS ground truth (Fig. 3*B*).

For Zimbabwe (Fig. 3D), our model is able to accurately estimate internet adoption in the small geographic provinces of Harare and Bulawayo, which have nearly triple the rate of internet penetration of neighboring regions. In Senegal (Fig. 3G), our estimates slightly underpredict overall internet penetration, but closely capture the overall pattern of adoption. Fig. 3J shows the within-country distribution of the Pearson Correlation Coefficient (r) and Fig. 3K shows the within-country distribution of mean absolute error between our predictions and ground truth using both standard 10-fold cross-validation and LOCO-CV. After demeaning the values by country and pooling all subnational units, correlations between observed and predicted values range from 0.49 to 0.81 (SI Appendix, Fig. S34). These correlations reflect the models' ability to capture subnational variation within countries in digital adoption and gender gaps. For a comparison of our model-based estimates and ground truth for each country, see SI Appendix, Fig. S26. Finally, Fig. 3L shows the within-country range in internet adoption among women at different levels of national adoption for our January 2025 estimates, indicating that within-country variation is generally larger at lower levels of adoption. This pattern is consistent across other adoption indicators (SI Appendix, Fig. S29).

Fig. 4 shows the proportion contribution of within-country inequality in internet and mobile adoption to total inequality within different human development index (HDI) quantiles in the distribution of 117 focal LMICs, based on January 2025 estimates (further details described in *SI Appendix*, section 3D). Subnational inequality accounts for a large proportion of the overall variation in adoption, especially at lower levels of human

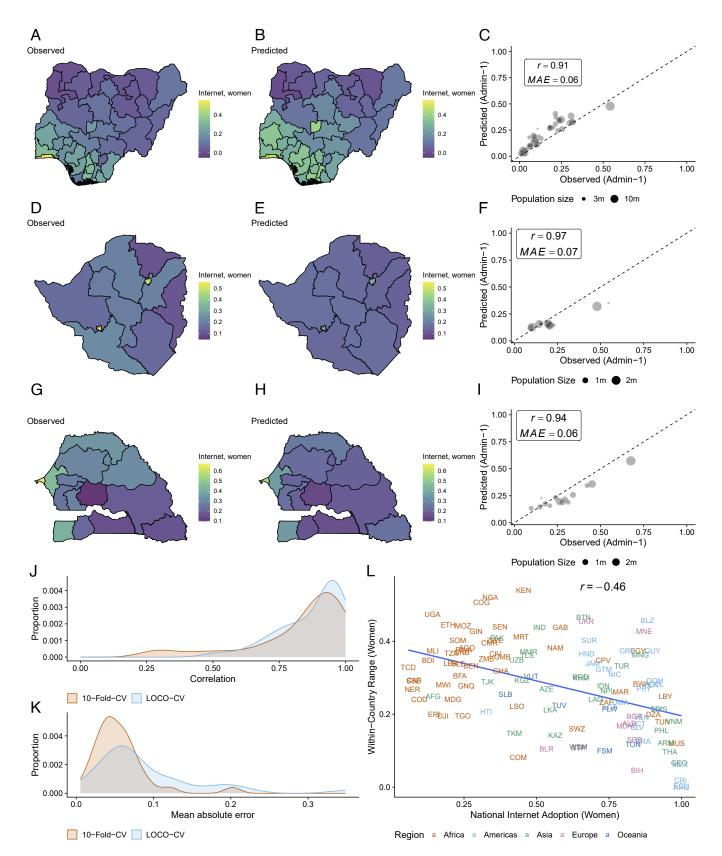


Fig. 3. Performance of model predicting internet use among women, assessed using leave-one-country-out cross-validation (LOCO-CV). (*A*–*C*) Observed and predicted estimates of internet adoption for women for Nigeria. (*D*–*F*) Observed and predicted estimates of internet adoption for women for Zimbabwe. (*G*–*I*) Observed and predicted estimates of internet adoption for women for Senegal. (*J* and *K*) Distribution of within-country mean absolute error (MAE) and correlation between observed and predicted values for both standard 10-fold CV and LOCO-CV. (*L*) Relationship between national-level estimates and within-country range (difference between *Top* and *Bottom* subnational units) for female internet penetration.

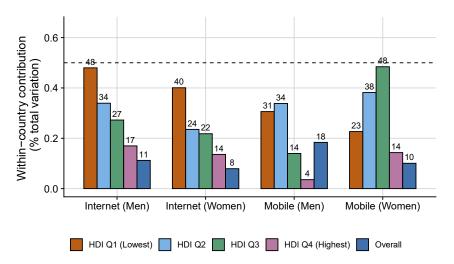


Fig. 4. The relative contribution of within-country variation in internet and mobile adoption to total variation by human development index (HDI) quantile. The dashed line represents equal contribution of within-country and between-country variation to overall inequality.

development. For internet adoption in countries with the lowest levels of human development, the within-country inequality accounts for 40% (women) and 48% (men) of the overall inequality.

Our estimates highlight substantial disparities in digital adoption and gender gaps between the *Top* and *Bottom* subnational units. Fig. 5 illustrates the countries with the largest subnational disparities in internet and mobile gender gaps as of January 2025. The *Bottom* bar shows the average *Top-Bottom* subnational disparity across all countries, which for the internet gender gap is 0.13 and mobile gender gap 0.11. In Nigeria, for example, the country with the largest subnational disparity in the internet gender gap index, the gender gap between the region closest to gender parity (Lagos, 0.92) and the region farthest from gender parity (Katsina, 0.43) is 0.49. The largest within-country disparities for internet

and mobile adoption levels are shown in *SI Appendix*, Fig. S20. Overall, internet adoption exhibits larger subnational disparities than mobile adoption. Across all digital indicators of adoption levels and gender gaps, the largest subnational disparities are concentrated in Africa, where historically uneven development, ethno-cultural differences, and investment efforts have resulted in highly disparate subnational regions (27). Outside of Africa, large subnational disparities occur in India and Pakistan.

Trends in Digital Adoption and Gender Gaps. For each indicator, we produce annual estimates from 2015 to 2023 and monthly estimates beginning January, 2024 through the present. Based on this, we can assess how average within-country inequality in internet adoption has changed over time. Fig. 6D shows the relative within-country inequality in the gender gap as

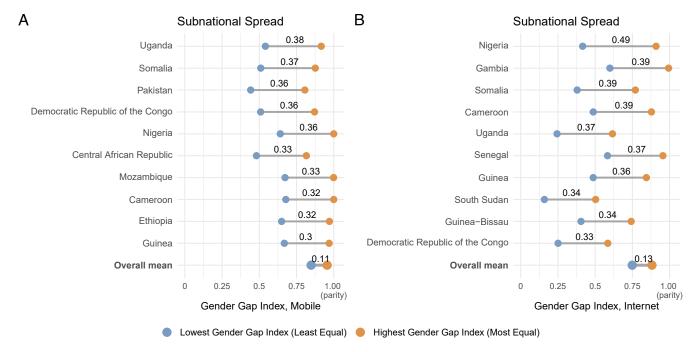


Fig. 5. The top 10 countries with the largest spread between their lowest and highest subnational unit with respect to the digital gender gap index (female-to-male ratio), organized in descending order by spread size for mobile (A) and internet (B). The Bottom bar shows the average Top-Bottom subnational spread across all countries.

defined by the GINI index by continent. The GINI index is a widely used measure of inequality ranging from 0 to 1, with higher values corresponding to higher levels of inequality. Over time, inequality in subnational units within countries has been declining. In particular, much progress has been made in Africa, with inequality within subnational units declining between 2015 and 2025. Progress has been made in Asia and the Americas over time, but from lower starting levels of within-country inequality. Much of this is explained by increasing adoption: As countries move toward near universal adoption in all subnational units, inequality declines.

Fig. 6 shows trends over time in the internet gender gap index across three example countries with contrasting trends. Both Nigeria and India have made substantial progress in closing the gender gap across all of their subnational units, as indicated by the increasing female-to-male ratio of internet use. Yet meaningful gender gaps remain in both countries, and progress is not universal. Afghanistan, for example, has faced stalled progress, and gender inequality with respect to internet adoption has increased, primarily due to stalled internet adoption for women, as revealed by the worsening female-to-male ratio. The model is able to detect this decrease in internet adoption for women beginning in 2021, which coincides with the year of the Taliban's Offensive and return to power in the country.

Feature Sets. Next, we compare the performance of models trained on different feature sets to give insight into the most important features for our models. We test three sets of features: features constructed from Facebook monthly active user counts ("Facebook features"), features derived from geospatial, satellite,

and population data ("offline features"), and our full set of features. Fig. 7A shows the R^2 value (coefficient of determination) based on models using each different set of features and LOCO-CV.

Several insights emerge from this figure. First, for mobile phone indicators, models trained using only Facebook features performed the worst, while for internet indicators, models trained using only offline features had the poorest performance. In general, Facebook features are stronger predictors of internet use than mobile phone use, likely due to the direct relationship between internet and Facebook usage. Second, including Facebook features substantially improves model accuracy. The increase in R^2 value was smallest for the mobile gender gap (0.07) and largest for internet adoption for women (0.40) between the offline model and the combined model with Facebook and offline features. This suggests that combining Facebook and offline features is a promising approach for estimating digital adoption and gender gaps, particularly for internet outcomes. Finally, offline features are stronger predictors of the mobile gender gap, whereas Facebook features better predict the internet gender gap. Offline predictors only modestly improved the performance of the model predicting gender gaps in internet adoption, suggesting that offline predictors may proxy for access and adoption, but do not as effectively capture the relative disadvantage of women compared with men in internet access.

Fig. 7B shows the most important features in our model predicting internet adoption for women; SI Appendix, Fig. S32 shows the most important features for all indicators. Given the number of highly correlated predictors (e.g., Facebook penetration for men and Facebook penetration for women), we

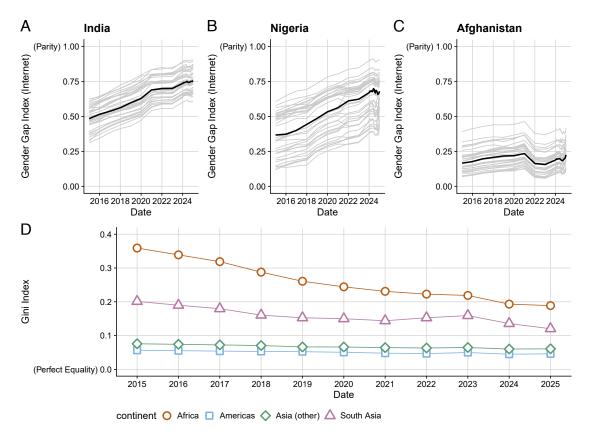


Fig. 6. (A–C) Trends over time in India, Nigeria, and Afghanistan for the internet gender gap index (female to male ratio). The light gray lines show subnational change over time, and the dark shaded line shows the median trend for each country. (D) Change in within-country inequality for the internet gender gap, as measured by the subnational GINI index.

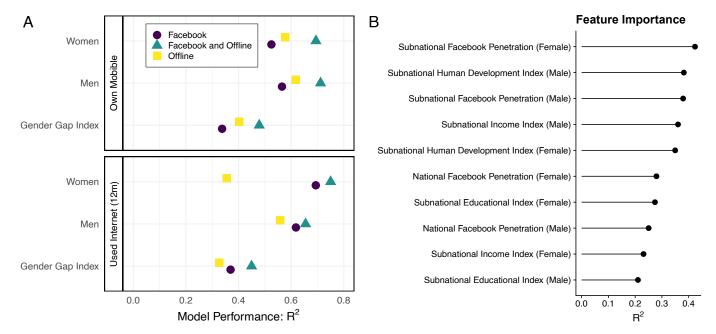


Fig. 7. Model performance and feature importance. (A) The R² values from leave-one-country-out cross-validation (LOCO-CV) using Facebook predictors, offline predictors, and both Facebook and offline predictors. (B) The 10 top features with strongest predictive power for internet penetration for women, as measured by R^2 for a univariate regression.

calculate feature importance as the R^2 for a univariate regression, assessed using LOCO-CV. These results show the factors that are most strongly associated with digital adoption.

The subnational Facebook features, along with proxies of overall economic development and human development at the subnational level, are the best predictors of overall internet adoption for both men and women. Other important features include the subnational education index and national-level Facebook penetration features. The importance of the human development index and its components is consistent with prior research modeling digital gender gaps at the national level (17, 18). While subnational income indices of the HDI are stronger predictors of gender-specific levels of adoption, the educational, human development, and gender development indices are more important for predicting gender gaps. This suggests that while digital adoption levels reflect overall economic development, digital gender gaps are more closely tied to levels of educational attainment and gender equality.

Discussion

Access to digital technology is an increasingly important dimension of population inequality, and acknowledged as a key indicator within the global SDGs, specifically SDG 4 on education, SDG 5 on gender equality and women's empowerment, and SDG 17 on revitalizing global partnership for sustainable development (SI Appendix, section 2). However, consistent and reliable subnational estimates of internet or mobile adoption are lacking, particularly in LMICs. Here, we demonstrate an approach for estimating subnational levels of internet adoption and mobile phone ownership by gender by applying machine learning algorithms to Facebook user counts, geospatial data, development indicators, and population composition data. Our approach enables us to expand subnational estimates from 525 regions in 33 LMICs, for which DHS ground truth is available, to 2,075 regions in 117 LMICs from 2015 to 2025.

Our results highlight the importance of focusing on the subnational context. In over 40 countries, the gap between the highest and lowest subnational units with respect to female internet adoption exceeds 30 percentage points, with an average gap of 28 percentage points. This subnational variation is especially pronounced in countries with very low levels of human development, where within-country inequality can account for over 40% of total inequality. This underscores the importance of subnational resolution for a more complete understanding of inequality in digital adoption, especially in countries with the lowest overall levels of human development. Our estimates provide a valuable lens for researchers and policy makers through which to assess areas that stand to benefit from the increasing rollout of digital programs and services within global development policies, as well as those at risk of being left behind. Similarly our method enables us and others to track how digital inequalities are shaped by external sociopolitical events, as indicated by the Afghanistan case where our model is able to detect a decrease in women's internet adoption after 2021 with the resurgence of the Taliban.

There are several promising avenues for further research to address some of our study's limitations. First, while Facebook is currently the world's largest social media platform, and is especially dominant in many LMICs, its popularity may decline in the future. This approach could be expanded to include social media data from additional platforms, though the ability to do so is contingent on public access to platform user count data. Second, our estimates are at the first administrative level. This represents a large improvement over national-level estimates, but some potential policy use cases may demand more geographic granularity. If reliable digital adoption estimates and social media user count data become available at the admin-2 level, our methods can be extended to a finer geographic resolution. Third, our training data are limited geographically, especially in Central and South America. However, our models perform well when compared to external survey-based estimates from the LSMS, indicating strong external validity on unseen data (*SI Appendix*, Fig. S3). Further, our estimates demonstrate strong and consistent correlations with independent data from the MICS, including in countries in Central and South America (*SI Appendix*, Fig. S6). Finally, while we provide systematic subnational predictions of trends of digital adoption over time, rigorous validation is limited by data availability. We recommend caution in interpreting unit-level temporal changes. We call upon more data collection efforts within global surveys to monitor digital inequalities at subnational levels.

Our approach addresses the call to usher in a "data revolution for sustainable development" by integrating social media, geospatial, and population data to monitor progress on the SDGs with better geographical and temporal resolution (28). We contribute to a growing body of work that emphasizes how machine learning approaches together with nontraditional sources of data can provide large-scale, cost-effective, and complementary measurement approaches to survey and field-based approaches for SDG monitoring (17, 24) and poverty and economic inequality mapping (22, 23, 29, 30). We show how these innovations can be applied to map gender-disaggregated indicators at finer geographical resolution, which is crucial for reducing inequalities both within- and between-countries. While reliable ground truth data are essential for training our models, the incorporation of higherfrequency social media and geospatial data enables us to provide a contemporary estimate of digital gender gaps. Moving forward, our continuous Facebook collections and regular updates will allow us track progress on digital gender inequalities across all LMICs with a monthly resolution ("nowcasting"). Alongside the geographical and temporal breadth, this subnational pipeline can also be usefully applied to assess the impacts of sociopolitical changes, policies, and interventions over time in specific cases and contexts.

Materials and Methods

To produce our estimates, we use three main sources of data: ground truth from DHS, offline features, and Facebook features. Our Facebook features are constructed from the Facebook monthly active user counts obtained from the Facebook Marketing API. Our offline features are constructed from population density data, satellite imagery, and subnational indices on human development, education, and income. No ethical approval was required for the study as we use entirely secondary data sources in the public domain that are preaggregated or aggregated from anonymized datasets. To train and calibrate our models, we use ground-truth data on internet use and mobile phone ownership from DHS surveys in 33 LMICs. A full list of features and ground truth outcomes is shown in *SI Appendix*, Table S1 and steps outlining feature construction are provided in *SI Appendix*, section 1.

Ground Truth Data on Internet and Mobile Access. Our ground-truth data come from 33 DHS surveys conducted between 2015 and 2023 covering 525 subnational units (31, 32). We include surveys from DHS Phase 7 onward, when questions on digital adoption were first added to the DHS questionnaire. There are several reasons DHS surveys are an excellent source of ground truth data for measuring digital adoption. First, DHS surveys are subnationally representative at the admin-1 level and have a well-established and vetted survey design. Second, unlike many censuses which ask about digital adoption at the household level, DHS surveys collect information at the individual level about digital adoption for both men and women. The individual-level data allow us to calculate gender-specific rates of digital adoption for internet and mobile technologies. Finally, across countries, the DHS program uses harmonized survey questions and sampling design, allowing for cross-national comparisons.

We use DHS microdata to obtain estimates of the percent of men and women aged 15 to 49 who own a mobile phone and have accessed the internet. Internet adoption is defined as having used the internet in the past 12 mo, and mobile phone ownership is defined as having personal ownership of a mobile phone. We focus on internet use in the past 12 mo, rather than having ever used the internet, because we are interested in measuring how many people have reliable access to the internet. We also calculate the gender gap index, defined as

Gender Gap Index =
$$\frac{I_f/I_m}{Pop_f/Pop_m},$$
 [1]

where for a specific indicator I (e.g., mobile phone ownership or internet use in the past 12 mo), I_f is the number of female users aged 15 to 49, I_m is the number of male users aged 15 to 49, Pop_f is the total population of women aged 15 to 49, and Pop_m is the total male population aged 15 to 49.

Facebook Monthly Active Users. To obtain counts of Facebook monthly active users (MAU), we query the public Facebook Marketing API. The Facebook Marketing API provides estimates of the number of daily or monthly active users disaggregated by characteristics such as gender, age, and device type (e.g., Android, iOS) within a given geographic boundary. To query the Facebook Marketing API, we use the pysocialwatcher package (33), and collect counts of monthly active users by gender and device type at the admin-1 level.*

We use these MAU counts to construct several different Facebook features. Our primary features are Facebook penetration by gender, defined as the proportion of women (or men) aged 18+ who used Facebook in the past month within a given admin-1 unit. Additionally, we create features corresponding to both the gender-specific gaps (female-to-male ratios) and the fraction of users who accessed Facebook through different access devices (e.g., iOS device). Finally, we include three national-level Facebook features on adoption by gender and gender gaps. For the full set of Facebook features used in our models, see *SI Appendix*, Table S1.

Temporal Alignment of Features with Ground Truth. The DHS data we use spanned the years 2015–2023, a period under which digital adoption increased. To the extent possible, we temporally aligned our features with the year of our ground truth observations as closely as possible. For instance, to align our features temporally with ground truth from the 2018 Nigeria DHS, we calculate the population-weighted nightlights feature for Nigeria using nightlights data from 2018 and population data from 2018. When perfect temporal agreement between feature and observed ground truth is not feasible, we used the closest available year to the DHS survey year. For our Facebook features, we constructed national-level features from our regular data collections spanning 2019–2025. Since the Facebook Marketing API cannot retrieve historical MAU counts, we linearly imputed national MAU counts back to 2015 to align temporally with the year of our ground truth DHS surveys. Our subnational Facebook features are based on ongoing collections beginning in April 2024. To achieve temporal alignment, we rescaled the 2024 subnational MAU counts using an adjustment factor, calculated as the ratio of the national MAU counts for the year of interest to the national MAU counts in 2024 (see SIAppendix, section 1 for details). To further capture changes over time in our models, we include a feature corresponding to the relative year a DHS survey was conducted.

Machine Learning Approach. We use a machine learning approach for prediction. We predict each of the six indicators separately using both Facebook and offline features. Flexible machine learning algorithms are appealing in this setting because of their ability to detect interactions, model higher-order effects, and better handle multiple, highly correlated predictors (34). Machine learning approaches have been applied for similar prediction settings for LMICs, such as for small-area estimation of wealth and poverty (21, 23).

We use ensemble Superlearning-also known as weighted ensembling or stacking-a method for combining multiple machine learning algorithms into

^{*}GADM, the Database of Global Administrative Areas, is a publicly available database of country administrative areas. When boundaries are available in the Facebook Marketing API that match the GADM-1 boundaries, we use the default Facebook boundaries. When no boundary is available in the Facebook Marketing that matches the GADM-1 boundaries (30%), we create custom shapefiles to match the GADM-1 boundaries.

a single algorithm (35). The motivation behind ensemble Superlearning is that a weighted combination of different algorithms may outperform any single algorithm by smoothing out limitations of any specific algorithm. The ensemble Superlearner algorithm selects the best weighted combination of algorithms using a cross-validation procedure to minimize overfitting risk (36). For our ensemble Superlearner, we use a library of widely used machine learning algorithms: random forests, generalized linear regression, gradient boosting machines, lasso regression, elastic net regression, polynomial splines regression, ridge regression, and extreme gradient boosting machines (see SI Appendix, Table S4 for a description of each algorithm and its weight toward the final ensemble Superlearner algorithm).

In total, we model six different outcomes: adoption levels by gender and gender gaps for both internet penetration and mobile phone ownership. We also generate an accompanying estimate of uncertainty for each prediction (SI Appendix, section 3B). For more detailed technical information on our machine learning approach, see our completed REFORMS checklist (37), a resource for promoting transparency and reproducibility in machine learning

Estimating Trends. Using the temporally aligned features, we trained models to predict digital adoption and gender gaps annually from 2015 to 2023 and monthly from January 2024 onward. Temporal variation was captured through year-specific features and the inclusion of a relative-year covariate. Because our training data spans a wide time range and includes temporal alignment of predictors, the model learns both spatial and temporal patterns in digital adoption. This enables us to generate consistent time series of subnational estimates, which we use to assess trends in adoption levels, gender gaps, and within-country inequality over time. However, estimating and validating trends remains inherently challenging due to limited temporal coverage of ground truth surveys and the lack of standardized validation data across years.

Cross-Validation. To evaluate the performance of our model, we use both standard 10-fold cross-validation (10-fold CV) and leave-one-country-out crossvalidation (LOCO-CV). For 10-fold CV, we randomly split our sample into ten separate folds. We trained our models on ninefolds and made predictions on a single hold-out fold; we repeated this process for each fold. We use the predictions on all held-out folds to estimate several model performance metrics.

For LOCO-CV, we split the sample into 33 separate folds defined by country. Holding out all subnational units in a given country ("hold-out partition"), we fit our models on the rest of our dataset ("training partition"). We then use our models to predict on the held-out subnational units of that country. This process is iterated for each country in the dataset, ensuring that every country's subnational units serve as a hold-out set. We use the predictions on all held-out units to estimate model performance metrics. By holding out data from a single country during training, LOCO-CV tests the model's capability to handle intercountry variability and minimizes overfitting risks specific to individual countries. LOCO-CV addresses concerns of geographical independence, providing a more stringent assessment of the model's geographical robustness.

We use these two separate cross-validation designs as they provide different perspectives. The LOCO-CV imitates a setting where we have no ground truth data for an entire country, while standard cross-validation is helpful for approximating how our model would perform in settings where ground truth data is available for most, but not all, subnational regions in a country. In comparison to 10-fold CV, LOCO-CV predictions show more conservative estimates of model performance (SI Appendix, Fig. S21).

External Validation. To assess external validity and generalizability over time, we benchmarked our predictions against 21 LSMS surveys (38) and 24 MICS surveys (39, 40), none of which were used in model training. Despite differences in survey design, reference periods, and question wording, our estimates aligned closely with observed values at the admin-1 level, showing high correlations and low mean absolute errors. To evaluate each model's ability to capture temporal dynamics, we compare predicted and survey-based

changes in digital adoption using repeated surveys using DHS, MICS, and LSMS within countries. Despite measurement limitations, the results indicate that the model captures meaningful variation in change over time. Nonetheless, we recommend caution when interpreting year-to-year changes for individual admin-1 units, as our ability to rigorously validate these estimates is limited. For a more detailed discussion and validation of trends, see SI Appendix, section 3F.

Performance Metrics. We use several different model performance metrics to evaluate model performance. First, we use R^2 , the coefficient of determination. Given a set of observed values $\{y_1, y_2, \dots, y_n\}$ and a set of predicted values $\{\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n\}$, the R^2 value is defined as

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}},$$
 [2]

where y_i is the observed value for the i^{th} observation, \hat{y}_i is the predicted value for the i^{th} observation, \bar{y} is the mean of the observed values, and n is the total number of observations. The R^2 value, or coefficient of determination, quantifies the proportion of variance in the dependent variable explained by the model. An R^2 value of 0 means the predictions are no better than using the mean of the outcome, whereas a value of 1 signifies perfect predictions.

As an alternative metric for assessing model fit, we use MAE:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|.$$
 [3]

The MAE provides an absolute measure of the average prediction error in the dependent variable's units, with a lower MAE indicating better model accuracy. Using both R^2 and MAE is advantageous: While R^2 offers a relative measure of fit, MAE yields a direct interpretation of prediction error magnitude and is more robust to outliers.

Data, Materials, and Software Availability. Aggregated data at first administrative level and code data have been deposited in Open Science Framework (https://doi.org/10.17605/OSF.IO/5E8WF) (41) and GitHub (https:// github.com/OxfordDemSci/dgg_subnational).

ACKNOWLEDGMENTS. For helpful discussions and feedback, we thank Dennis Feehan, Michelle Niemann, Anna Bolgrien, Sharada Srinivasan, and participants of the PAA 2024 "Digital Demography" session, the EPC 2024 "Modelling Subnational and Spatial Variation" session, the Digital Inequality and Sustainable Development workshop, the Johns Hopkins Population Health seminar series, the Max Planck Institute for Demographic Research Digital and Computational Demography seminar series, the Sciences Po Digital Inequality Symposium, and the Leverhulme Centre for Demographic Science seminar series. We thank Jiaxuan Li for excellent research assistance. We acknowledge financial support from the Bill and Melinda Gates Foundation (INV-045370), the Leverhulme Trust for the Leverhulme Centre for Demographic Science (RC-2018-003) and Leverhulme Prize, the Alexander von Humboldt Foundation and its founder, the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung), and infrastructure grants from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (P2CHD042849) and the National Institute on Aging (NIA) (P30AG066614).

Author affiliations: ^aDepartment of Sociology, University of Oxford, Oxford OX1 1JD, United Kingdom; ^bNuffield College, University of Oxford, Oxford OX1 1NF, United Kingdom; ^cLeverhulme Centre for Demographic Science, University of Oxford, Oxford OX1 1JD, United Kingdom; ^d Department of Sociology and Population Research Center, University of United Kingdom; "Department of Sociology and Population Research Center, Oniversity of Texas at Austin, Austin, TX 78712; ^e Qatar Computing Research Institute, Hamad bin Khalifa University, Doha 00000, Qatar; ^fDepartment of Digital and Computational Demography, Max Planck Institute for Demographic Research, Rostock, Mecklenburg-Vorpommern, 18057 Germany; and ^gSaarland Informatics Campus, Saarland University, Saarbrücken 66123. Germany

Author contributions: C.F.B., M.F., I.W., and R.K. designed research; C.F.B., M.F., D.R.L., and R.K. performed research; C.F.B., M.F., J.Y., X.Z., and R.K. analyzed data; R.K. obtained funding; and C.F.B., D.R.L., I.W., and R.K. wrote the paper.

- C. M. Masi, H. Y. Chen, L. C. Hawkley, J. T. Cacioppo, A meta-analysis of interventions to reduce loneliness. Pers. Soc. Psychol. Rev. Off. J. Soc. Pers. Soc. Psychol. Inc. 15, 219–266 (2011)
- R. A. Findlay, Interventions to reduce social isolation amongst older people: Where is the evidence? Ageing Soc. 23, 647-658 (2003).
- P. DiMaggio, E. Hargittai, "From the 'Digital Divide' to 'Digital Inequality': Studying Internet Use as Penetration Increases" (Working Papers 47, Princeton University, School of Public and International Affairs, Center for Arts and Cultural Policy Studies, 2001).
- R. Kashyap et al., "Digital and computational demography" in Research Handbook on Digital Sociology, J. Skopek, Ed. (Edward Elgar Publishing, 2023), pp. 47–85.
- J. Hjort, J. Poulsen, The arrival of fast internet and employment in Africa. Am. Econ. Rev. 109, 1032-1079 (2019).
- L. K. Lakdawala, E. Nakasone, K. Kho, Dynamic impacts of school-based internet access on student learning: Evidence from Peruvian public primary schools. Am. Econ. J. Econ. Pol. 15, 222–254 (2023).
- N. Czernich, O. Falck, T. Kretschmer, L. Woessmann, Broadband infrastructure and economic growth. Econ. J. 121, 505–532 (2011).
- V. Rotondi, R. Kashyap, L. M. Pesando, S. Spinelli, F. C. Billari, Leveraging mobile phones to attain sustainable development. *Proc. Natl. Acad. Sci. U.S.A.* 117, 13413–13420 (2020).
- L. J. Dettling, Broadband in the labor market: The impact of residential high-speed internet on married women's labor force participation. ILR Rev. 70, 451-482 (2017).
- D. Garcia et al., Analyzing gender inequality through large-scale Facebook advertising data. Proc. Natl. Acad. Sci. U.S.A. 115, 6958-6963 (2018).
- J. S. Song, Female participation in African labor markets: The role of information and communication technologies. *Telecommun. Policy* 45, 102174 (2021).
- H. Amber, B. B. Chichaibelu, Narrowing the gender digital divide in Pakistan: Mobile phone ownership and female labor force participation. *Rev. Dev. Econ.* 27, 1354–1382 (2023).
- B. M. Lagan, M. Sinclair, W. G. Kernohan, Internet use in pregnancy informs women's decision making: A web-based survey. Birth Berkeley Calif. 37, 106-115 (2010).
- S. Lund et al., Mobile phones improve antenatal care attendance in Zanzibar: A cluster randomized controlled trial. BMC Pregnancy Childbirth 14, 29 (2014).
- J. J. H. Bashingwa et al., Assessing exposure to Kilkari: A big data analysis of a large maternal mobile messaging service across 13 states in India. BMJ Glob. Health 6, e005213 (2021).
- ITU, Bridging the Gender Divide. ITU (2022). https://www.itu.int:443/en/mediacentre/ backgrounders/Pages/bridging-the-gender-divide.aspx. Accessed 25 September 2023.
- M. Fatehkia, R. Kashyap, I. Weber, Using Facebook ad data to track the global digital gender gap. World Dev. 107, 189-209 (2018).
- R. Kashyap, M. Fatehkia, R. A. Tamime, I. Weber, Monitoring global digital gender inequality using the online populations of Facebook and Google. *Demogr. Res.* 43, 779–816 (2020).
- R. A. Cohen, P. F. Adams, Use of the internet for health information: United States, 2009. NCHS Data Brief 66, 1–8 (2011).
- World Bank Group, World Development Report 2016: Digital Dividends (Washington, DC: World Bank, 2016).

- J. Blumenstock, G. Cadamuro, R. On, Predicting poverty and wealth from mobile phone metadata. Science 350, 1073-1076 (2015).
- N. Pokhriyal, D. C. Jacques, Combining disparate data sources for improved poverty prediction and mapping. Proc. Natl. Acad. Sci. U.S.A. 114, E9783-E9792 (2017).
- G. Ćhi, H. Fang, S. Chatterjee, J. E. Blumenstock, Microestimates of wealth for all low- and middle-income countries. Proc. Natl. Acad. Sci. U.S.A. 119, e2113658119 (2022).
- G. Boo et al., High-resolution population estimation using household survey data and building footprints. Nat. Commun. 13, 1330 (2022).
- I. Permanyer, J. Smits, Inequality in human development across the globe. Popul. Dev. Rev. 46, 583–601 (2020).
- S. Jayachandran, The roots of gender inequality in developing countries. Annu. Rev. Econ. 7, 63–88 (2015).
- C. Boone, Inequality and Political Cleavage in Africa: Regionalism by Design, Cambridge Studies in Comparative Politics (Cambridge University Press, Cambridge, 2024).
- IEAG, "A world that counts, mobilising the data revolution for sustainable development" (Tech. Rep., United Nations, 2014).
- M. U. Mirza, C. Xu, B. V. Bavel, E. H. Van Nes, M. Scheffer, Global inequality remotely sensed. Proc. Natl. Acad. Sci. U.S.A. 118, e1919913118 (2021).
- L. Dong, C. Ratti, S. Zheng, Predicting neighborhoods' socioeconomic attributes using restaurant data. Proc. Natl. Acad. Sci. U.S.A. 116, 15447–15452 (2019).
- D. Program, The DHS Program, Demographic and Health Surveys (2025). https://www.dhsprogram.com. Accessed 7 July 2023.
- E. H. Boyle, M. King, M. Sobek, IPUMS-Demographic and Health Surveys: Version 4.0 [dataset]. IPUMS (2024). http://doi.org/10.18128/D080.V4.1.
- M. Araujo, Y. Mejova, I. Weber, F. Benevenuto, "Using Facebook ads audiences for global lifestyle disease surveillance: Promises and limitations" in Proceedings of the 2017 ACM on Web Science Conference, WebSci '17 (ACM, New York, NY, USA, 2017), pp. 253–257.
- I. Lundberg, J. E. Brand, N. Jeon, Researcher reasoning meets computational capacity: Machine learning for social science. Soc. Sci. Res. 108, 102807 (2022).
- M. J. Van der Laan, E. C. Polley, A. E. Hubbard, Super learner. Stat. Appl. Genet. Mol. Biol. 6, Article 25 (2007).
- R. V. Phillips, M. J. van der Laan, H. Lee, S. Gruber, Practical considerations for specifying a super learner. Int. J. Epidemiol. 52, 1276–1285 (2023).
- S. Kapoor et al., REFORMS: Consensus-based recommendations for machine-learning-based science. Sci Adv. 10, eadk3452 (2024).
- World Bank, Living Standards Measurement Study Integrated Surveys on Agriculture (LSMS-ISA).
 World Bank. https://www.worldbank.org/en/programs/lsms/initiatives/lsms-ISA. Accessed 1 March 2025.
- S. Khan, A. Hancioglu, Multiple indicator cluster surveys: Delivering robust data on children and women across the globe. Stud. Fam. Plan. 50, 279-286 (2019).
- A. Bolgrien, E. H. Boyle, M. Sobek, M. L. King, IPUMS MICS: Version 1.2 [Harmonization Code] (IPUMS, Minneapolis, MN, 2024).
- C. F. Breen et al., Data from "Mapping subnational gender gaps in internet and mobile adoption using social media data." Open Science Framework. https://doi.org/10.17605/OSF.IO/5E8WF. Deposited 6 June 2025.

Supporting Information for

- Mapping subnational gender gaps in internet and mobile adoption using social media data
- Casey F. Breen, Masoomali Fatehkia, Jiani Yan, Xinyi Zhao, Douglas R. Leasure, Ingmar Weber, and Ridhi Kashyap
- Casey F. Breen and Ridhi Kashyap.
- 6 E-mail: casey.breen@demography.ox.ac.uk and ridhi.kashyap@nuffield.ox.ac.uk

7 This PDF file includes:

- Supporting text
- 9 Figs. S1 to S34
- Tables S1 to S8
- SI References

Supporting Information Text

1. Feature and ground truth construction

We used several different data sources to construct the features and ground truth measures of digital adoption for our modeling pipeline. A full list of features and ground truth outcomes is shown in Table S1. An overview of the processing steps taken to create different features is shown in Table S2.

1A. Constructing Facebook features. We collected Facebook monthly active user (MAU) counts using the Facebook (Meta) Marketing API. This API, which is publicly accessible, is designed to provide advertisers with tools to help them advertise across Meta platforms. We used the "Ad Account Delivery Estimate" endpoint, which allows users to query MAU counts in a given location with specific attributes (e.g., gender, age, access device type, etc.). The Marketing API only provides current MAU counts and cannot be used to query MAU counts from the past.

To systematically query the Facebook Marketing API, we used an adapted version of the publicly available pysocialwatcher package (1). This software automates repeated queries to the Facebook Marketing API based on a user-provided set of locations and attributes. To construct the Facebook features for our models, we collected MAU counts for each country and admin-1 region by gender (female and male) and access type (iOS, Wi-Fi, and 4G+ mobile network). We collected these data with a daily temporal resolution beginning in 2019 for national-level collections and April 2024 for admin-1-level collections.

We used these MAU counts to construct several different features. First, we calculated overall subnational Facebook penetration features by gender by combining averaged MAU counts with current population estimates from Worldpop. Second, we used these penetration features to calculate the female to male ratio in Facebook penetration. Finally, we calculated the gender-specific fraction of overall users who access Facebook through different means (e.g., fraction of women who accessed Facebook through Wi-Fi). We construct these features both at the national and admin-1-level.

Given the stable, positive trend in national-level MAU counts in most countries, we fit generalized linear models (GLM) with a log link and a linear trend to our national MAU counts from 2019 to 2024. We used these models to impute MAU counts back to 2015. To achieve temporal alignment for subnational features, we rescaled the April 2024 subnational MAU counts using an adjustment factor defined as the ratio of the national MAU count in a given period to the national MAU count in April 2024:

$$MAU_{subnational,year} = MAU_{subnational,2024} \times \underbrace{\frac{MAU_{national,year}}{MAU_{national,2024}}}_{\text{adjustment factor}}.$$
 [1]

The result is a longitudinal set of Facebook MAU counts from 2015 to the present at the admin-1 and national level. In our models, we use both the national-level and subnational-level features to capture both overall national adoption and subnational heterogeneity.

The full set of Facebook features used in our model is shown in Table S1. We treat Facebook access method (e.g., WiFi, 4G+, etc.) features as time invariant. We currently have ongoing daily collections at both the subnational and national level. We plan to update the models monthly to incorporate the most current Facebook features to predict contemporary levels and gaps in digital adoption ("nowcast").

1B. DHS processing. We calculated all ground truth estimates of internet and mobile adoption using DHS surveys. We restricted to DHS surveys between 2015 and 2023 that have digital adoption information available for both men and women. For most DHS surveys, the universe of eligible respondents is men and women aged 15–49. We exclude the 2018 Indonesia DHS survey, which only includes married men aged 25–54. In total, we used 33 DHS surveys corresponding to 1,568,617 interviews (Table S3).

We used the GPS location of each DHS clusters to map individuals onto their corresponding admin-1 units. All DHS estimates of digital adoption were calculated using survey weights.

1C. Offline features. The offline features were selected to ensure complete coverage across all LMICs. Additionally, we restricted to features that were measured consistently and harmonized across countries, which constrained the number of offline features included in the model. To construct population estimates by gender and age, we use data from Worldpop's 1km X 1km unstructured grids (2). These data are available from 2015-2020. We calculated a population-density metric, which we standardized using Z-scores.

We used a series of development and gender-equality indicators from the Global Data Lab (3). Specifically, we use indicators capturing human development, gender development, income, and education. We include human development and gender development features at both the national and subnational level to capture overall levels and deviations from national values.

The nightlights data come from the Earth Observation Group (4, 5). We took the mean nightlights value within each subnational unit, and standardized it using Z-scores.

1D. Handling missing values. We selected a parsimonious set of features to ensure broad coverage across LMICs. For the 525 admin-1 units used to train our machine learning model, there were only 8 missing values, all for the gender development index in Guinea. In the full set of 2,075 subnational units, there were no missing values for our key Facebook features. For units with missing offline features (approximately 9% of subnational units), we imputed missing values for a feature using the nearest

available non-missing year. If no data from adjacent years were available, we used the median overall value of the continent the country was in.

We do not make predictions for countries where no available Facebook MAU counts are available: American Samoa, China, Cuba, Fiji, French Southern Territories, Kosovo, Marshall Islands, Mayotte, North Korea, Papua New Guinea, Russia, Réunion, Saint Helena, Ascension, and Tristan da Cunha, Seychelles, Sudan, and Western Sahara.

Variable Name	Туре	Source	Country (N)	Subnational (N)	Temporal Alignment
Used Internet Age 15-49 Women (%)	Ground truth	DHS	33	525	_
Owns Mobile Age 15-49 Wom (%)	Ground truth	DHS	33	525	_
Used Internet Age 15-49 Men (%)	Ground truth	DHS	33	525	_
Owns Mobile Age 15-49 Men (%)	Ground truth	DHS	33	525	_
Used Internet Age 15-49 FM Ratio (%)	Ground truth	DHS	33	525	_
Owns Mobile Age 15-49 FM Ratio (%)	Ground truth	DHS	33	525	_
Nightlight Mean Z-score	Offline	NASA Earth Observations	117	2075	Aligned to survey year
Population Density Z-score	Offline	Worldpop	117	2075	Aligned to survey year
Subnational Gender Development Index (GDI)	Offline	Subnational Dev. Database	117	2075	Aligned to survey year
Subnational Human Development Index (HDI) Men	Offline	Subnational Dev. Database	117	2075	Aligned to survey year
Subnational Human Development Index (HDI) Women	Offline	Subnational Dev. Database	117	2075	Aligned to survey year
Educational Index Females	Offline	Subnational Dev. Database	117	2075	Aligned to survey year
Educational Index Males	Offline	Subnational Dev. Database	117	2075	Aligned to survey year
Income Index Females	Offline	Subnational Dev. Database	117	2075	Aligned to survey year
Income Index Males	Offline	Subnational Dev. Database	117	2075	Aligned to survey year
Human Development Index (HDI) National	Offline	Subnational Dev. Database	117	2075	Aligned to survey year
Gender Development Index (GDI) National	Offline	Subnational Dev. Database	117	2075	Aligned to survey year
Continent	Offline	Constructed	117	2075	Static
Years since 2015	Offline	Constructed	117	2075	Constructed relative to survey yea
FB Penetration 13+ Male 2024	Facebook	FB Marketing API	117	2075	Aligned to survey year
FB Penetration 13+ Female 2024	Facebook	FB Marketing API	117	2075	Aligned to survey year
FB Age 18+ Gender Gap 2024	Facebook	FB Marketing API	117	2075	Aligned to survey year
iOS Age 18+ Female Fraction 2024	Facebook	FB Marketing API	117	2075	Aligned to survey year
iOS Age 18+ Male Fraction 2024	Facebook	FB Marketing API	117	2075	Aligned to survey year
WiFi Age 18+ Female Fraction 2024	Facebook	FB Marketing API	117	2075	Aligned to survey year
WiFi Age 18+ Male Fraction 2024	Facebook	FB Marketing API	117	2075	Aligned to survey year
4G+ Age 18+ Female Fraction 2024	Facebook	FB Marketing API	117	2075	Aligned to survey year
4G+ Age 18+ Male Fraction 2024	Facebook	FB Marketing API	117	2075	Aligned to survey year
FB Penetration 18+ Male 2024 (National)	Facebook	FB Marketing API	117	2075	Aligned to survey year
FB Penetration 18+ Female 2024 (National)	Facebook	FB Marketing API	117	2075	Aligned to survey year
FB Age 18+ Gender Gap (National)	Facebook	FB Marketing API	117	2075	Aligned to survey year

Table S1. List of features and ground truth measures used in the analysis and their source. The temporal alignment column indicates how each feature was aligned in time with the ground truth data.

Data	Data source	Processing Steps
Ground truth estimates of digital adoption	DHS Program	Map DHS clusters onto their corresponding admin-1 units using GPS coordinates.
		2. Calculate gender-specific, population-weighted measures of mo-
		bile phone ownership and internet use (past 12 months). Then cal-
		culate the digital gender gap indices at the admin-1-level.
Population estimates	WorldPop	1. Obtain Worldpop estimates of population counts by sex and age
		in each admin-1 unit.
		Aggregate population counts to match the target population (age 15-49).
		Calculate the population density.
Development indicators	Global Data Lab	1. Match the Global Data Lab (GDL) units with the admin-1 units. For
		matching, we first use exact name matching. If this fails, we perform
		fuzzy name matching with manual verification. Finally, for units still not matched, we perform geo-matching.
		2. Calculate Global Data Labs (GDL) variables in each admin-1 unit.
Nightlight data	Earth Observation Group	Resample the population raster data.
		Average and weight the nightlight value in each admin-1 unit using the population estimates from WorldPop.
Facebook monthly active user counts	Facebook marketing API	1. Obtain monthly active user (MAU) counts by gender and device
		type.
		Construct population-weighted measures of Facebook adoption by gender and device type using population estimates from World- pop.

Table S2. Overview of data processing steps.

Country	Country Code	Start Year	End Year	# Women	# Men
Angola	AO	2015	2016	14379	5684
Armenia	AM	2015	2016	6116	2755
Benin	BJ	2017	2018	15928	7595
Burkina Faso	BF	2021	2021	17659	7720
Burundi	BU	2016	2017	17269	7552
Cambodia	KH	2021	2022	19496	8825
Cameroon	CM	2018	2019	14677	6978
Côte d'Ivoire	CI	2021	2021	14877	7591
Ethiopia	ET	2008	2008	15683	12688
Gabon	GA	2019	2021	11043	6894
Gambia	GM	2019	2020	11865	4636
Guinea	GN	2018	2018	10874	4117
Haiti	HT	2016	2017	15513	9795
India	IA	2019	2021	724115	101839
Kenya	KE	2022	2022	32156	14453
Liberia	LB	2019	2020	8065	4249
Madagascar	MD	2021	2021	18869	9037
Malawi	MW	2015	2016	24562	7478
Mali	ML	2018	2018	10519	4618
Mauritania	MR	2019	2021	15714	5673
Mozambique	MZ	2022	2023	13183	5380
Nepal	NP	2022	2022	14845	4913
Nigeria	NG	2018	2018	41821	13311
Pakistan	PK	2017	2018	15068	3691
Rwanda	RW	2019	2020	14634	6513
Senegal	SN	2019	2019	8649	3365
Sierra Leone	SL	2019	2019	15574	7197
South Africa	ZA	2016	2016	8514	3618
Tanzania	TZ	2022	2022	15254	5763
Timor-Leste	TL	2016	2016	12607	4622
Uganda	UG	2016	2016	18506	5336
Zambia	ZM	2018	2019	13683	12132
Zimbabwe	ZW	2015	2015	9955	8396
Total				1,236,870	331,747

Table S3. The 33 DHS surveys used to construct ground truth estimates of digital adoption.

2. Sustainable development goals

- The United Nations sustainable development goals (SDG) are a set of 17 goals and targets to guide international development policy. Originally established in 2015, the SDGs were established to reduce poverty, hunger, AIDS, and discrimination against women and girls (6). Each sustainable development goal has a set of accompanying targets and indicators for tracking development. The estimates produced in this study most directly contribute to monitoring and tracking the following indicators:
 - Goal 5: Achieve gender equality and empower all women and girls
 - 5.b.1 Proportion of individuals who own a mobile telephone, by sex
- Goal 4: Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all
- 4.4.1 Proportion of youth and adults with information and communications technology (ICT) skills, by type of skill
- Goal 17: Strengthen the means of implementation and revitalize the Global Partnership for Sustainable Development
 - 17.8.1 Proportion of individuals using the Internet
- A full list of sustainable development goals are available on the UN Website.

83 3. Modeling

77

3A. Superlearner weights. The set of machine learning algorithms included in our ensemble Superlearner models and their respective weights are presented in Table S4. Each algorithm's weight represents its contribution to the overall ensemble Superlearner predictions. These weights are estimated using non-negative least squares regression; for more details on practical considerations of implementing a Superlearner, see Phillips et al. 2023 (7).

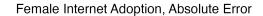
The algorithms that are most heavily weighted in our final ensemble models are random forest, gradient boosting machines (GBM), and ridge regression. The high weights on random forest and GBM suggest that tree-based models, well suited for capturing non-linear relationships and interactions, often perform best for these prediction tasks.

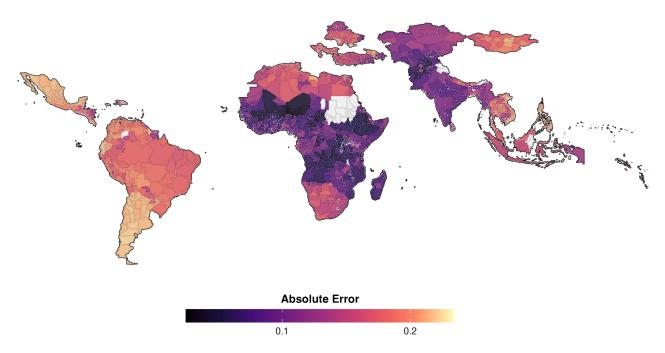
89

		Internet		Mobile			
Algorithm	Description	Women	Men	Ratio	Women	Men	Ratio
glm	Generalized Linear Model	0.00	0.00	0.00	0.00	0.00	0.00
lasso	Lasso Regression	0.00	0.00	0.00	80.0	0.00	0.00
ridge	Ridge Regression	0.62	0.45	0.59	0.37	0.06	0.31
elastic_new	Elastic Net with 50% L1 Ratio	0.00	0.00	0.00	0.00	0.00	0.08
poly_spline	Polynomial Spline	0.00	0.00	0.00	0.11	0.13	0.06
random forest	Random Forest with 100 Trees	0.00	0.16	0.25	0.19	0.27	0.00
gbm	Gradient Boosted Machine	0.18	0.40	0.12	0.25	0.54	0.54
xgb	Extreme Gradient Boosting	0.22	0.00	0.03	0.00	0.00	0.00
SuperLearner	Ensemble Model	_	-	-	_	-	_

Table S4. Full set of machine learning algorithms used in the Superlearner and their relative contribution to the final Superlearner model.

3B. Quantifying uncertainty. To estimate uncertainty for each subnational unit, we regressed the absolute residual against a set of all observable variables for each subnational unit with available auxiliary estimates from DHS surveys. This is a standard approach that has been used in past efforts using machine learning for small-area estimation (8). We used a non-negative least squares regression to ensure the resulting estimates are non-negative. We fit separate models by indicator to predict the absolute residual size for all subnational units. Qualitatively, our predicted absolute error is largest in high-adoption settings and smallest in low-adoption settings (Fig. S1). The relative error, defined as the absolute error divided by the predicted value, is largest in low-adoption settings.





В

Female Internet Adoption, Relative Error

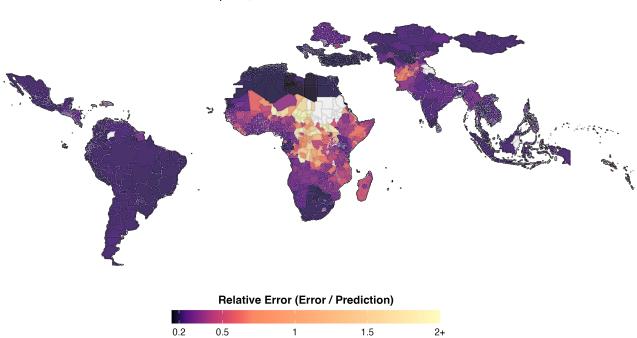


Fig. S1. (A) The absolute predicted residual error in each subnational region. A value of 0.1 corresponds to 10 percentage points. (B) The relative predicted error, defined as the absolute error divided by the predicted value, in each subnational region.

3C. Bootstrap analysis of uncertainty in DHS ground truth. Our underlying ground truth data, which come from DHS surveys, are subject to sampling variability, especially at the admin-1 level. To understand how this uncertainty affects our analysis, we conduct a bootstrap analysis. Specifically, we repeatedly resample individual survey respondents with replacement within subnational units to create 10,000 synthetic bootstrap samples. We then compare our original estimates of digital adoption to the estimates from our 10,000 bootstrapped samples.

This analysis quantifies the uncertainty in our digital adoption estimates due to sampling variability. As shown in Table S5, there is an upper bound on the R^2 values attainable given the noise in the ground truth data. Notably, maximum R^2 values are consistently lower for the survey-based gender gap index estimates than for overall adoption levels, reflecting higher sampling variation in the former.

Category	Q10	Q50	Q90	Mean
Mobile Women	0.930	0.982	0.996	0.966
Mobile Men	0.786	0.928	0.984	0.886
Mobile Gender Gap Index	0.687	0.908	0.981	0.843
Internet Women	0.960	0.988	0.997	0.981
Internet Men	0.919	0.974	0.993	0.963
Internet Gender Gap Index	0.407	0.843	0.959	0.709

Table S5. Percent of total variation explained (R^2) from 10,000 bootstrap resamples

3D. Decomposing within and between country variance. To assess the relative contribution of within-country and between country variation to overall inequality, we used mean log deviation. Mean log deviation has appealing decomposability properties, and has been used elsewhere to quantify the additional inequality revealed at the subnational level (9). The mean log deviation (MLD) for all subnational units is defined as:

$$MLD = \frac{1}{N} \sum_{i=1}^{N} \log \left(\frac{\mu}{r_i} \right),$$
 [2]

where N is the number of subnational units, μ is the overall mean rate (e.g., mean internet penetration rate), and r_i is the rate for a given subnational unit i. The MLD can be decomposed into within-country and between-country components:

$$MLD = MLD_W + MLD_B.$$
 [3]

The overall mean rate μ can be expressed as:

99

100

101

103

104

105

107

108

109

110

116

121

123

$$\mu = \sum_{k=1}^{K} \frac{N_k}{N} \mu_k,\tag{4}$$

where K is the number of countries, N_k is the number of subnational units in country k, and μ_k is the mean rate for country k.

The within-country MLD for each country k is:

$$MLD_k = \frac{1}{N_k} \sum_{i \in k} \log \left(\frac{\mu_k}{r_i} \right).$$
 [5]

The overall within-country MLD is a weighted sum of the within-country MLDs:

$$MLD_W = \sum_{k=1}^K \frac{N_k}{N} MLD_k.$$
 [6]

The between-country MLD is calculated based on the mean rates of the countries:

$$MLD_B = \sum_{k=1}^K \frac{N_k}{N} \log \left(\frac{\mu}{\mu_k}\right).$$
 [7]

The resulting estimates of MLD_B and MLD_k indicate how much of the total inequality in the rate (e.g., internet penetration rate) is due to within-country disparities versus between-country disparities.

3E. Validation against external estimates. To assess external validity, we benchmark our estimates against two independent survey-based sources of subnational digital adoption estimates: the Living Standards Measurement Study (LSMS) and the Multiple Indicator Cluster Surveys (MICS). None of these surveys were used in model training, allowing us to assess model performance against external ground truth. Comparisons between our model-based estimates and these external surveys are imperfect due to inconsistent question wording, differences in reference periods (e.g., internet use in the past 12 vs. past 3 months), and sampling variation due to small sample sizes after subnational disaggregation (10). We benchmark against the MICS and LSMS surveys separately, addressing harmonization and comparability challenges specific to each.

The Living Standards Measurement Study (LSMS) surveys are high-quality, nationally representative surveys conducted by the World Bank (11). Each survey captures detailed information on income, expenditures, demographics, health, and other socioeconomic indicators, such as digital adoption. The majority, but not all, surveys collect individual-level measures of mobile phone ownership and internet use. Each LSMS survey provides geographic identifiers that enable analysis at the admin-1 level. In total, we benchmark against 21 LSMS surveys at the admin-1 level, as listed in Table S6.

Country	Country Code	Survey Year	# Women (Internet)	# Men (Internet)	# Women (Mobile)	# Men (Mobile)
Burkina Faso	BFA	2018	10665	8751	10665	8751
Burkina Faso	BFA	2021	11307	9297	11307	9297
Côte d'Ivoire	CIV	2021	14723	13108	14723	13108
Ethiopia	ETH	2021	0	0	2578	2908
Guinea-Bissau	GNB	2018	10942	9615	10942	9615
Guinea-Bissau	GNB	2021	10816	9841	10816	9841
Cambodia	KHM	2019	0	0	1241	1104
Mali	MLI	2018	9566	7996	9566	7996
Mali	MLI	2021	9866	8399	9866	8399
Malawi	MWI	2016	0	0	12223	10868
Malawi	MWI	2019	0	0	11528	10404
Malawi	MWI	2020	0	0	2211	2085
Niger	NER	2018	7530	5978	7530	5978
Niger	NER	2021	8565	6547	8565	6547
Nigeria	NGA	2015	5696	5147	5702	5151
Nigeria	NGA	2018	6366	5797	5201	5119
Nigeria	NGA	2023	6548	6087	4884	4824
Senegal	SEN	2018	16256	12718	16256	12718
Senegal	SEN	2021	16340	12287	16340	12287
Togo	TGO	2018	6370	5489	6370	5489
Togo	TGO	2021	6667	5628	6667	5628
Total			158223	132685	185181	158117

Table S6. The 21 LSMS surveys used for external validation.

To measure mobile phone ownership, LSMS generally uses the same definition as our study (and DHS surveys): whether an individual personally owns a mobile phone. However, across LSMS surveys, definitions can vary subtly. For instance, in the Nigerian LSMS surveys, questions about mobile phone ownership are framed in terms of access to a mobile phone rather than explicit individual-level ownership. We exclude these surveys from our mobile phone benchmarking exercises. For internet adoption, the LSMS uses a slightly different measure: whether an individual has internet access. This contrasts with the definition used in our study (and DHS surveys) of whether an individual has used the internet in the past 12 months. Having access to the internet and having used the internet in the past 12 months are highly related yet distinct.

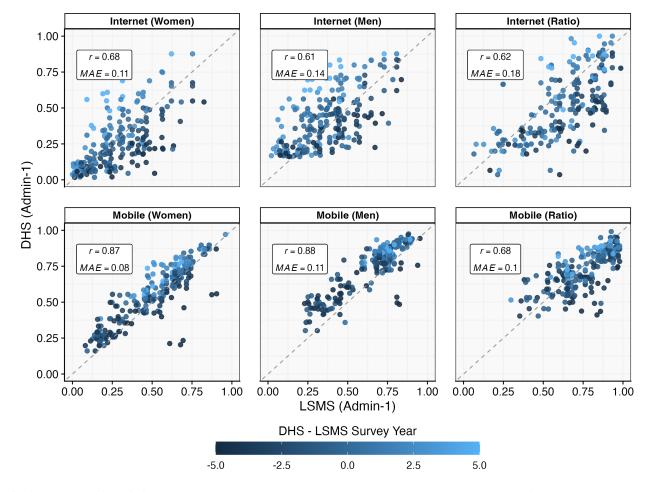
To align with the age universe of our study and the DHS, we restrict LSMS respondents to those aged 15–49. To minimize noise due to sampling variation, we only present comparisons for subnational units with at least 150 relevant observations (e.g., 150 or more women when estimating mobile phone adoption among women).

For background, we first compare DHS and LSMS estimates at the subnational level in countries where both surveys were conducted. As shown in Fig. S2, we see general agreement between the estimates of digital adoption. However, the LSMS surveys systematically underestimate the internet gender gap index relative to DHS surveys. This discrepancy likely stems from the surveys' slightly different definitions of internet use: having access to the internet does not equate directly into internet use.

Fig. S3 benchmarks our subnational estimates with those from the LSMS surveys. Our model-based estimates have strong overall agreement with the LSMS estimates. However, the LSMS surveys again systematically underestimate the internet gender gap relative to both our predictions. This mirrors the disagreement between the LSMS and DHS estimates.

For background, we first compare DHS and LSMS estimates at the subnational level in countries where both surveys were conducted. As shown in Fig. S2, we see general agreement between estimates of digital adoption. However, the LSMS surveys systematically underestimate the internet gender gap index relative to DHS surveys. This discrepancy likely stems from the surveys' slightly different definitions of internet use: having access to the internet does not equate directly into internet use. Figure S3 benchmarks our subnational estimates with those from the LSMS surveys. Our model-based estimates have strong overall agreement with the LSMS estimates. However, the LSMS surveys again systematically underestimate the internet gender gap relative to both our predictions. This mirrors the disagreement between the LSMS and DHS estimates.

Fig. S3 benchmarks our subnational estimates with those from the LSMS surveys. Our model-based estimates have strong overall agreement with the LSMS estimates. However, the LSMS surveys systematically underestimate the internet gender gap relative to both our predictions and ground truth from the DHS. This mirrors the disagreement between the LSMS and DHS estimates.



 $\textbf{Fig. S2.} \ \ \text{Comparison of DHS vs. LSMS estimates of adoption levels and gaps.} \ \ \text{The} \ \ r \ \ \text{denotes the Pearson correlation coefficient and} \ \ MAE \ \ \text{denotes mean absolute error.}$

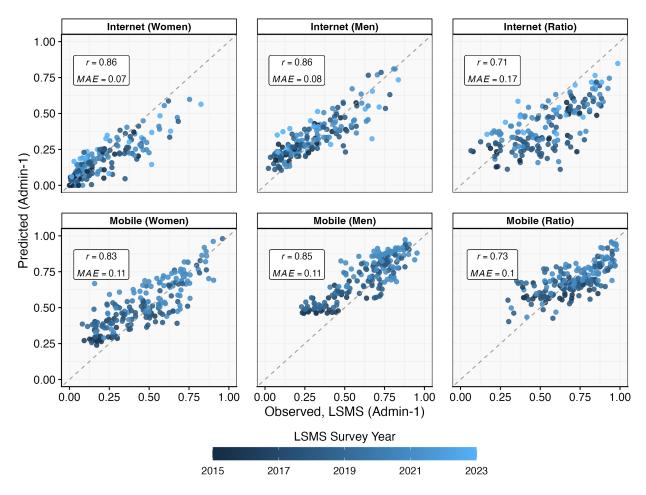


Fig. S3. Predicted values vs. observed out-of-sample values from LSMS surveys. All comparisons are at the admin-1 level. The r denotes the Pearson correlation coefficient and MAE denotes mean absolute error.

Benchmark against MICS surveys The Multiple Indicator Cluster Surveys (MICS) surveys are global household surveys developed by UNICEF to collect internationally comparable data on health and well-being (12, 13). MICS Round 6 surveys generally collect individual-level information on internet use and mobile phone adoption. A subset of these surveys includes admin-1 geographic identifiers, enabling subnational comparisons. We restrict the MICS surveys to the same age range as used in our study and in the DHS, men and women between age 15-49. The full set of 24 MICS surveys is shown in Table S7.

Digital adoption is measured similarly across MICS and DHS (and our study), with nearly identical survey questions. However, MICS and DHS differ slightly in how they ask about internet use: MICS uses a 3-month recall window for internet use, while DHS (and this study) uses a 12-month recall window. To reconcile this, we constructed an adjustment factor that converts the 3-month estimates to the 12-month estimates. Using a subset of surveys that ask about internet usage in both the past 3 months and the past 12 months, we estimate a simple linear correction at the subnational level. Specifically, we adjust the 3-month estimates by 1.0153 to obtain the corresponding 12-month estimate.

Country	Country Code	Survey Year	# Women (Internet)	# Men (Internet)	# Women (Mobile)	# Men (Mobile)
Afghanistan	AFG	2022	44341	0	44341	0
Benin	BEN	2021	18436	7916	18436	7916
Bangladesh	BGD	2019	64377	0	64377	0
Congo - Kinshasa	COD	2017	21756	6113	21756	6113
Comoros	COM	2022	6945	2850	6945	2850
Cuba	CUB	2019	8849	3700	8843	3699
Guinea-Bissau	GNB	2018	10946	2805	10945	2805
Guyana	GUY	2019	5887	2214	5887	2212
Iraq	IRQ	2018	30660	0	30660	0
Jamaica	JAM	2022	4890	0	4889	0
Kyrgyzstan	KGZ	2018	5742	0	5742	0
Kyrgyzstan	KGZ	2023	5629	0	5629	0
Kiribati	KIR	2020	4150	2083	4150	2083
Nigeria	NGA	2021	38810	17347	38810	17347
Nauru	NRU	2023	651	328	651	328
Sierra Leone	SLE	2017	17873	7415	17873	7415
Suriname	SUR	2018	7000	2828	6998	2827
Eswatini	SWZ	2021	2007	1658	2007	1658
Turks & Caicos Islands	TCA	2019	824	364	824	364
Chad	TCD	2019	22564	6931	22567	6931
Turkmenistan	TKM	2019	7558	0	7558	0
Tonga	TON	2019	2903	1232	2903	1232
Vanuatu	VUT	2023	3412	1389	3412	1389
Zimbabwe	ZWE	2019	10130	4179	10130	4179
Total			346340	71352	346333	71348

Table S7. The 24 MICS surveys used for external validation.

178

180

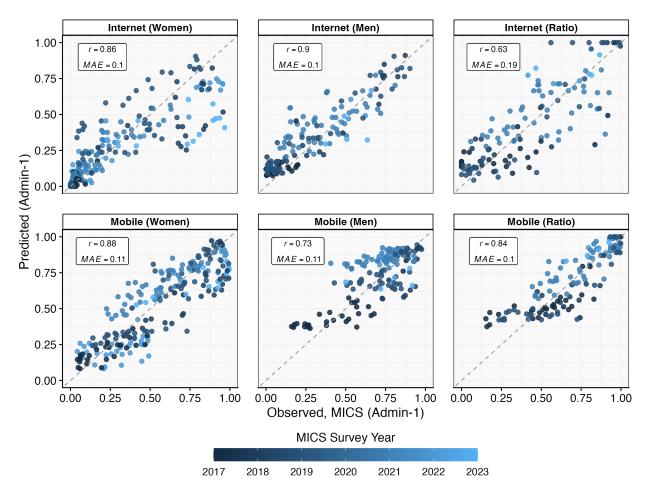


Fig. S4. Comparison of admin-1-level estimates with independent ground truth data from Multiple Indicator Cluster Surveys (MICS).

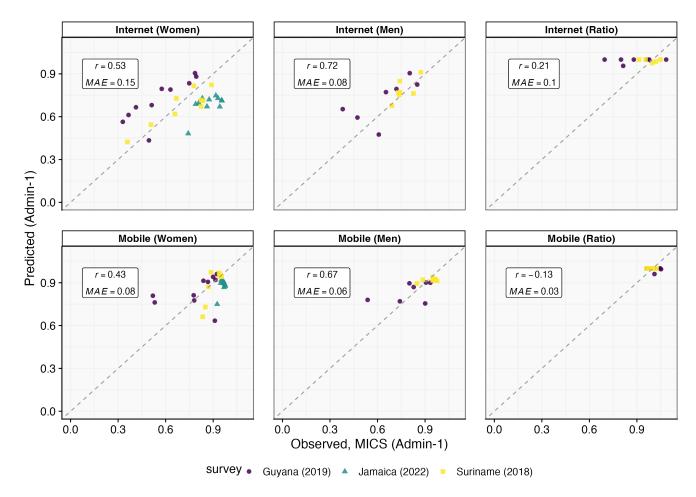


Fig. S5. Comparison of subnational-level estimates with independent ground truth data from Multiple Indicator Cluster Surveys (MICS) for three high-adoption countries in Central and South America. The correlations are modest because of the limited variation in ground truth values, especially for the mobile and internet gender gap indices, where most subnational estimates cluster near 1.0.

Finally, we benchmark at the national-level MICS indicators in Fig. S6. Our aggregated national-level predictions are highly correlated at the national-level with low mean absolute errors (MAE), indicating no systematic national-level over- or underestimation

181

183

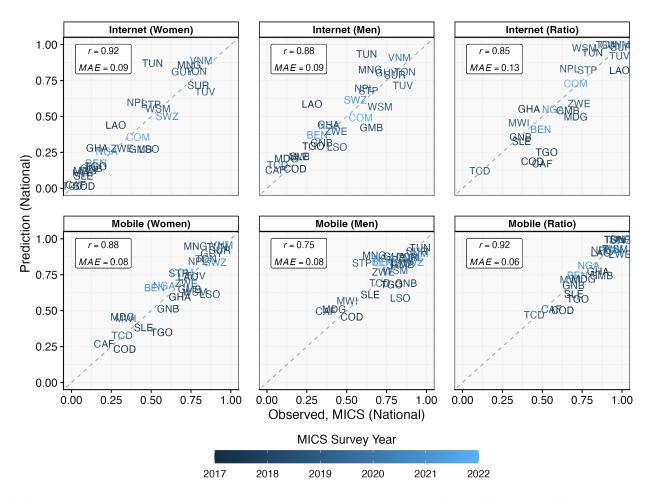


Fig. S6. Comparison of national-level estimates with independent ground truth data from Multiple Indicator Cluster Surveys (MICS) for recent MICS surveys (2019 onwards). MICS surveys are nationally representative, offering valuable independent estimates for comparison. National-level predictions are population-weighted averages of subnational predictions.

184

185

186 187

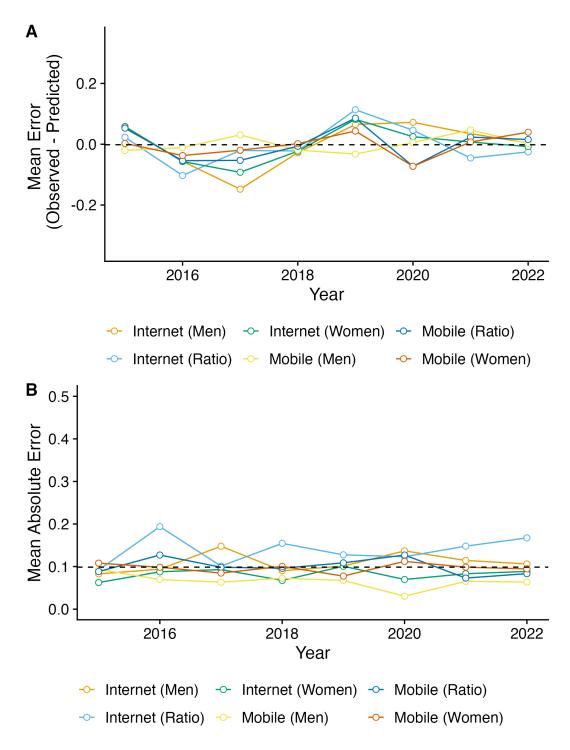


Fig. S7. (A) Mean error, defined as the mean of the observed minus predicted values, by year and indicator, assessed using LOCO-CV. (B) Mean absolute error, defined as the mean of the absolute difference between observed and predicted values, by year and indicator, also assessed using LOCO-CV. Dashed black lines represent the average error (Panel A) and mean absolute error (Panel B) across all indicators and years.

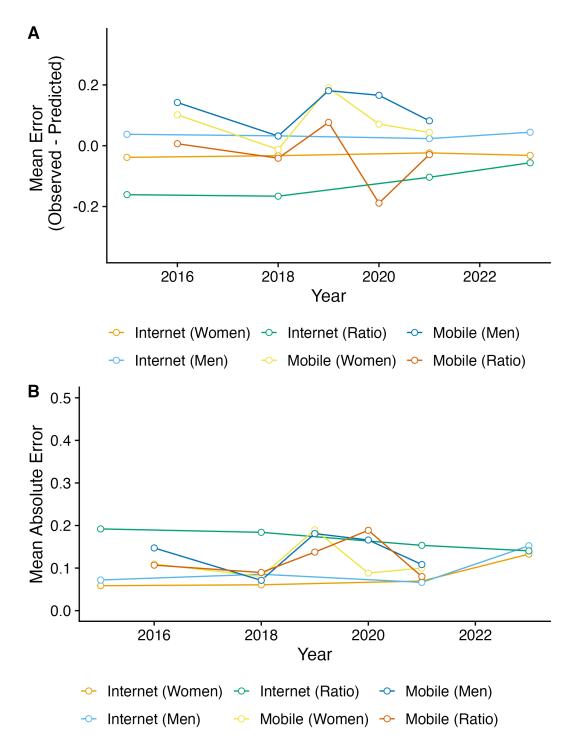


Fig. S8. Mean error, defined as the mean of the observed minus predicted values, by year and indicator, assessed using LSMS survey ground truth. (B) Mean absolute error, defined as the mean of the absolute difference between observed and predicted values, by year and indicator, also assessed using LSMS survey ground truth.

As an additional validation exercise, we compare our model-based estimates of change over time to changes observed across repeated survey waves from DHS, MICS, and LSMS. Table S8 lists all countries with multiple survey waves included in this exercise. As discussed in Section 3E, differences in survey design and question wording, as well as small subnational sample sizes, limit the reliability of survey-based estimates of change over time. Due to these differences, we cannot treat survey-based estimates of change over time as ground truth in this setting in a straightforward way. Given these design differences, sampling variability, and the relatively short time windows, we expect only modest agreement between model-predicted and survey-based estimates.

To illustrate, we compare our model-based estimates to survey-based estimates for Nigeria, a country where DHS, MICS,

and LSMS surveys were conducted after 2015. Fig. S9 plots survey-based estimates against our predicted estimates of internet adoption for women. Our estimated time trends largely align with the survey-based measures. In many cases, the model predictions align more closely with the survey-based estimates than the survey-based estimates do with each other. This highlights the noise inherent in survey-based estimates of change in digital adoption over time.

Fig. S10 compares the change between the first and last available survey estimates to the corresponding model-predicted change at the admin-1 level. Across indicators, the correlation between predicted and survey-based change ranges from 0.21 to 0.38. This moderate correlation is expected given the aforementioned noisiness of multi-year change from survey data. Differences in survey design, sampling variability, and short observation windows constrain the maximum attainable alignment between predicted and survey-based estimates of change over time at the subnational level. In some cases, the survey-based estimates indicate negative change, which likely reflects sampling variability rather than true declines in adoption. These results nonetheless suggest that the model is not merely reproducing static spatial patterns, but is instead learning meaningful temporal dynamics. In other words, the model is sensitive not only to where digital adoption is higher or lower, but also to how adoption is changing over time within specific subnational units.

Country	Country Code	Survey Year	Source
Benin	BEN	2017	DHS
Benin	BEN	2021	MICS
Burkina Faso	BFA	2018	LSMS
Burkina Faso	BFA	2021	DHS
Burkina Faso	BFA	2021	LSMS
Côte d'Ivoire	CIV	2021	DHS
Côte d'Ivoire	CIV	2021	LSMS
Ethiopia	ETH	2016	DHS
Ethiopia	ETH	2021	LSMS
Guinea-Bissau	GNB	2018	LSMS
Guinea-Bissau	GNB	2018	MICS
Guinea-Bissau	GNB	2021	LSMS
Kyrgyzstan	KGZ	2018	MICS
Kyrgyzstan	KGZ	2023	MICS
Cambodia	KHM	2019	LSMS
Cambodia	KHM	2021	DHS
Mali	MLI	2018	DHS
Mali	MLI	2018	LSMS
Mali	MLI	2021	LSMS
Malawi	MWI	2015	DHS
Malawi	MWI	2016	LSMS
Malawi	MWI	2019	LSMS
Malawi	MWI	2020	LSMS
Niger	NER	2018	LSMS
Niger	NER	2021	LSMS
Nigeria	NGA	2015	LSMS
Nigeria	NGA	2018	DHS
Nigeria	NGA	2018	LSMS
Nigeria	NGA	2021	MICS
Nigeria	NGA	2023	LSMS
Nepal	NPL	2016	DHS
Nepal	NPL	2022	DHS
Philippines	PHL	2017	DHS
Philippines	PHL	2022	DHS
Senegal	SEN	2017	DHS
Senegal	SEN	2018	DHS
Senegal	SEN	2018	LSMS
Senegal	SEN	2019	DHS
Senegal	SEN	2021	LSMS
Senegal	SEN	2023	DHS
Sierra Leone	SLE	2017	MICS
Sierra Leone	SLE	2019	DHS
Togo	TGO	2018	LSMS
Togo	TGO	2021	LSMS
Tanzania	TZA	2015	DHS
Tanzania	TZA	2013	DHS
Zimbabwe	ZWE	2015	DHS
Zimbabwe	ZWE	2019	MICS
Zimbabwe	∠VV⊏	2019	IVIIUS

Table S8. Countries with repeated DHS, MICS, or LSMS surveys with information on individual-level digital adoption for women and men and available admin-1 geographic identifiers.

Fig. S9. For admin-1 units in Nigeria, the predicted internet adoption for women (blue line) vs. survey ground truth from DHS (2018), MICS (2021) and LSMS (2015, 2018, 2023). Survey-based estimates are only shown if the admin-1 unit has at least 150 women respondents for a given survey and year.

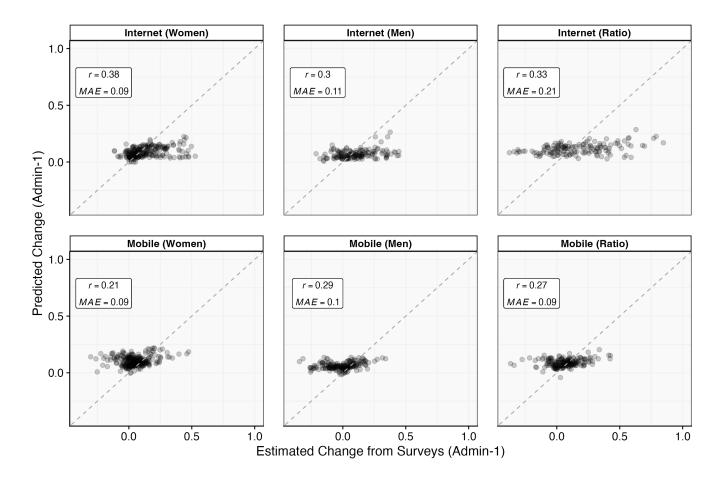


Fig. S10. Survey-based estimates of change over time vs. our model predicted change over time in digital adoption across all countries with multiple survey waves (DHS, MICS, LSMS). Each point represents a subnational (admin-1) unit. Analysis is restricted to units with at least 150 relevant observations in both surveys. Note: We do not consider survey-based estimates of change over time to be reliable ground truth for benchmarking. Differences in survey design, sampling variability, and short observation windows constrain the maximum attainable alignment. We include these comparisons to assess alignment despite known limitations, but caution against overinterpretation: subnational estimates of multi-year change are subject to substantial noise. Low to moderate correlation is expected and does not reflect the models' inability to capture trends.

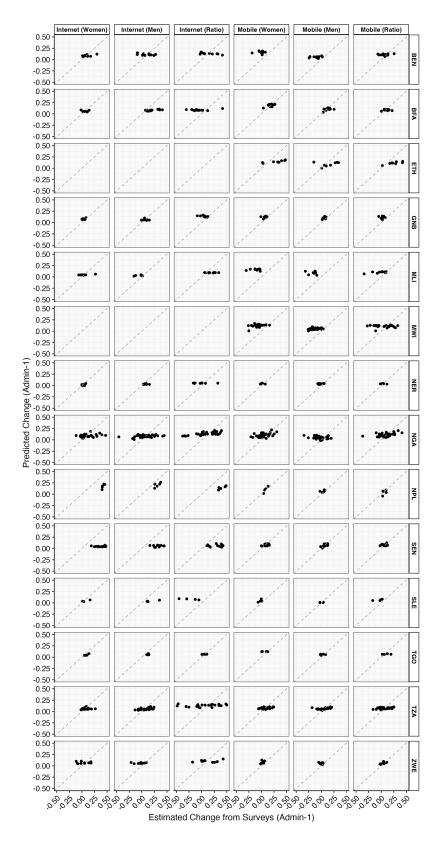


Fig. S11. Survey-based estimates of change over time vs. predicted change over time in digital adoption for countries with multiple survey waves (DHS, MICS, LSMS). Analysis is restricted to admin-1 units with over 150 relevant observations in both surveys.

Note: We do not consider survey-based estimates of change over time to be reliable ground truth for benchmarking. Differences in survey design, sampling variability, and short observation windows constrain the maximum attainable alignment. We include these comparisons to assess alignment despite known limitations, but caution against overinterpretation: subnational estimates of multi-year change are subject to substantial noise. Low to moderate correlation is expected and does not reflect the models' inability to capture trends.

We further benchmark our estimates against those from the 2015 Tanzania DHS survey. Tanzania is a helpful case study for assessing trends as it has two different DHS surveys that measured digital adoption, the first in 2015 and the second in 2022. Our model only uses the most recently available survey year of 2022, allowing for an independent validation against the 2015 estimates. As shown in Fig. S12, our model is able to produce accurate estimates for Tanzania in 2015.

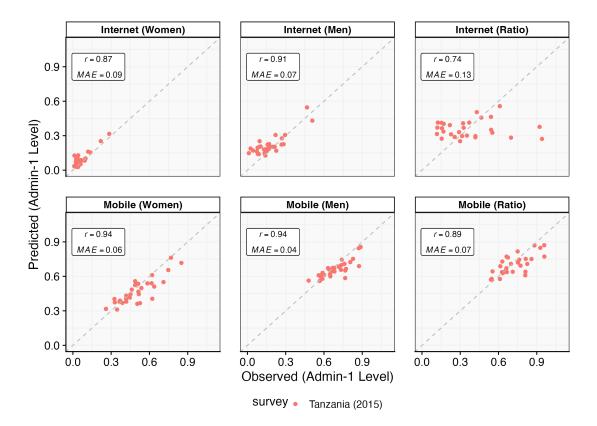


Fig. S12. Predicted vs. observed values for Tanzania in 2015. The 2015 Tanzania survey was not used to train the model, but we see high overall agreement between the estimates of adoption in Tanzania.

3G. Validation of estimates of uncertainty. To validate our uncertainty, we compare our estimated predicted errors against our true observed errors in the LSMS surveys. Fig. S13 shows that across the seven LSMS surveys considered, our observed and predicted errors are largely consistent. Across all indicators, our average observed error (9.2) is very similar to, but slightly smaller than, our average predicted error (9.8). However, like all estimates of uncertainty, our estimates of uncertainty are inherently based on units where we have underlying ground truth data. In regions where ground truth is absent, our uncertainty estimates may not fully capture the true range of predictive errors. Additionally, our estimates assume that the relationships observed in the training data hold in unobserved areas, which may not always be the case due to spatial, temporal, or contextual differences. As a result, while our uncertainty estimates are well-calibrated where validation data exist, their reliability may decrease in areas with limited or no observational data.

Prediction accuracy itself may vary across regions and indicators due to several factors. First, differences in data availability can impact model performance, as regions with sparse or less reliable data may introduce greater uncertainty. Second, regional heterogeneity in digital adoption patterns means that relationships between predictive features and outcomes may differ across contexts, affecting model generalizability. For example, the relationship between internet and Facebook usage can vary across contexts. Third, certain features may have stronger or weaker predictive power depending on local socioeconomic and infrastructural conditions. These factors contribute to variation in both absolute and relative error, influencing the overall accuracy of our estimates.

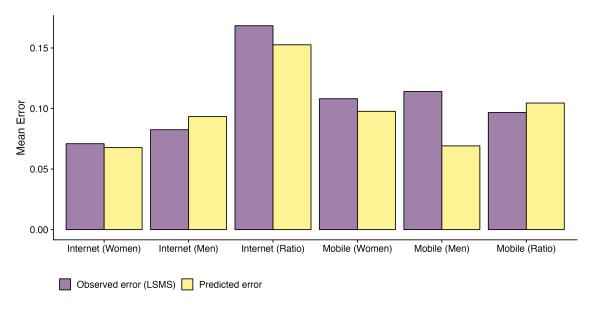
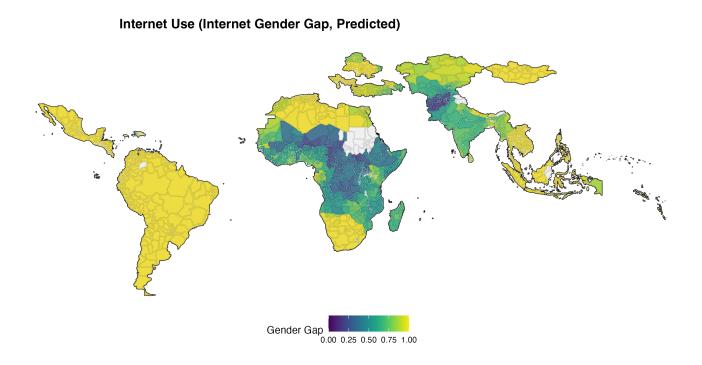


Fig. S13. The mean predicted error and observed error across seven different LSMS countries. Across all indicators, our observed average error (9.2) was slightly smaller than our predicted average error (9.8).

4. Maps of subnational gender gaps and adoption levels



 $\textbf{Fig. S14.} \ \ \textbf{Estimates of gender gaps in internet use.} \ \ \textbf{Map displays estimates from January 2025}.$

Internet Use (Women, Predicted)

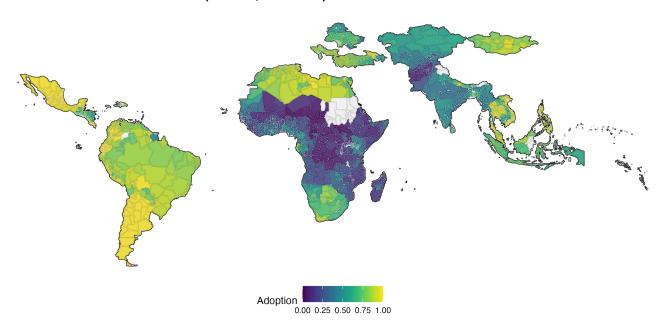


Fig. S15. Estimates of internet adoption for women. Map displays estimates from January 2025.

Internet Use (Men, Predicted) Adoption 0.00 0.25 0.50 0.75 1.00

Fig. S16. Estimates of internet adoption for men. Map displays estimates from January 2025.

Mobile Ownership (Mobile Gender Gap, Predicted)

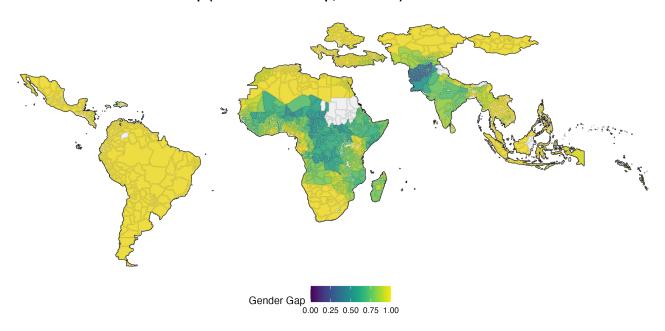


Fig. S17. Estimates of gender gaps in mobile phone ownership. Map displays estimates from January 2025.

Mobile Ownership (Women, Predicted)

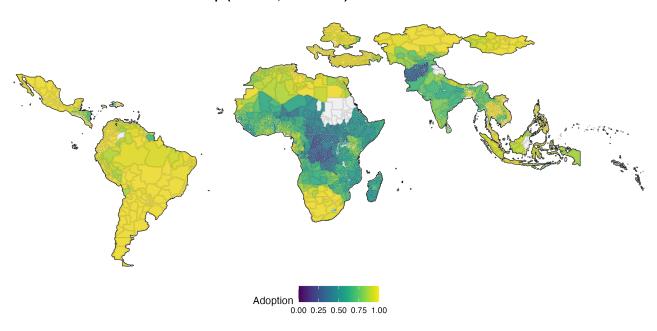


Fig. S18. Estimates of mobile phone adoption for women. Map displays estimates from January 2025.

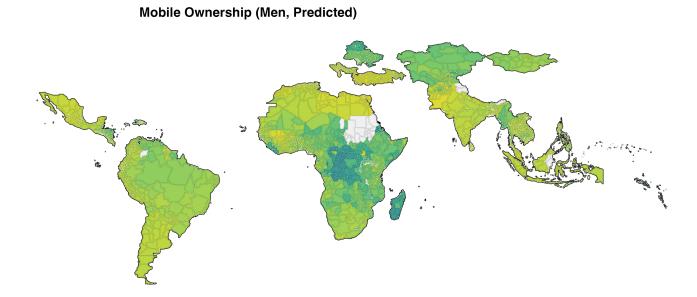


Fig. S19. Estimates of mobile phone adoption for men. Map displays estimates from January 2025.

Adoption 0.00 0.25 0.50 0.75 1.00

Fig. S20. The top 10 countries with the largest spreads between their lowest and highest subnational unit by gender and digital indicator, organized in descending order by gap size. The bottom bar shows the average top-bottom subnational spread across all countries.

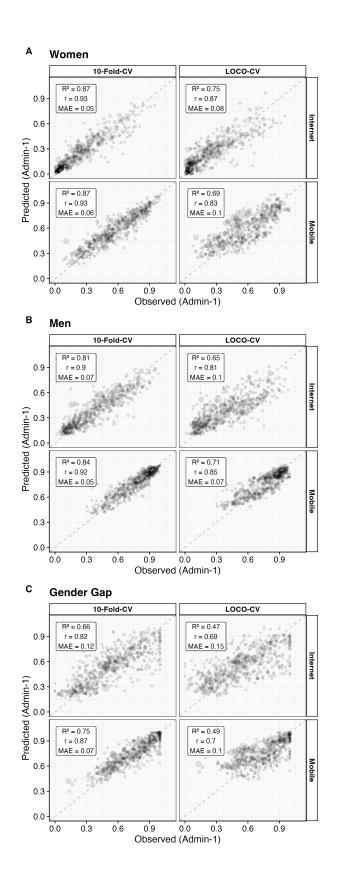


Fig. S21. Scatterplot of observed vs. predicted values under 10-fold cross-validation (10-fold CV) and leave-one-country-out cross-validation (LOCO-CV).

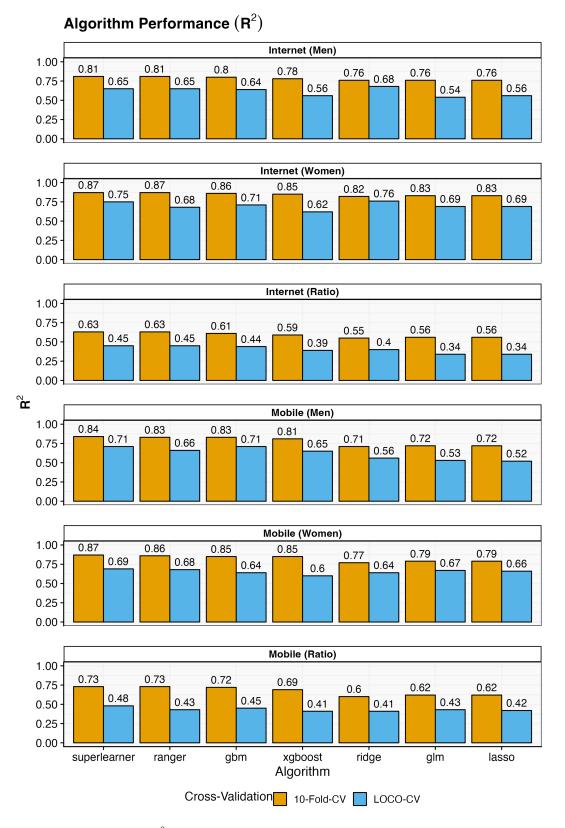


Fig. S22. Performance by algorithm, as measured by \mathbb{R}^2 (coefficient of determination) under 10-fold cross-validation (10-fold-CV) and leave-one-country-out cross-validation (LOCO-CV).

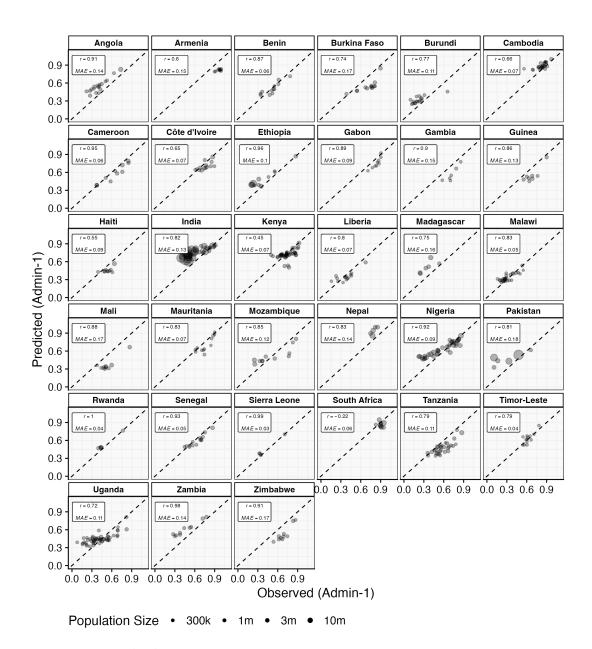


Fig. S23. Scatterplot of observed vs. predicted mobile phone ownership for women by country.

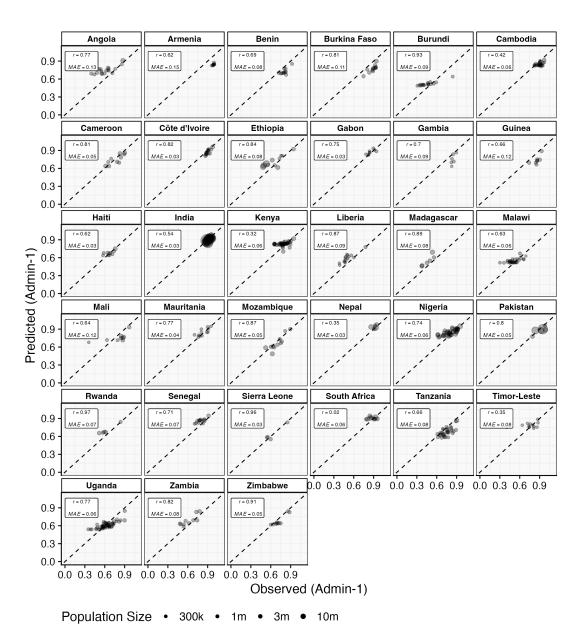


Fig. S24. Scatterplot of observed vs. predicted mobile phone ownership for men by country.

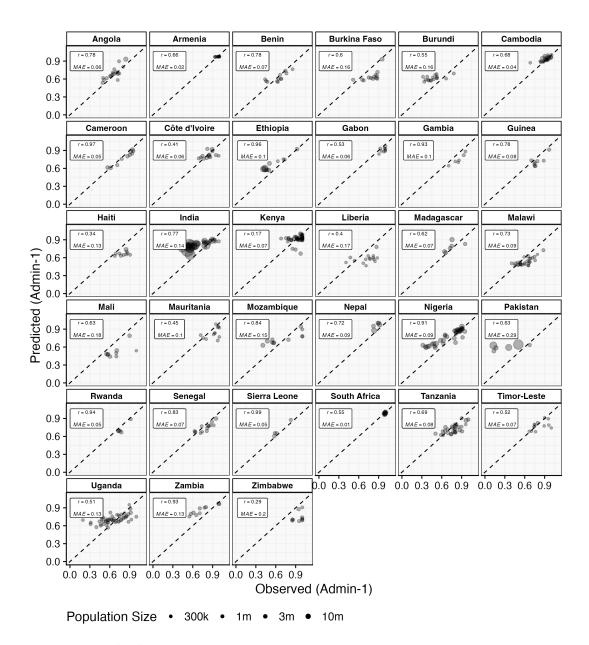


Fig. S25. Scatterplot of observed vs. predicted mobile phone ownership gender gap index by country.

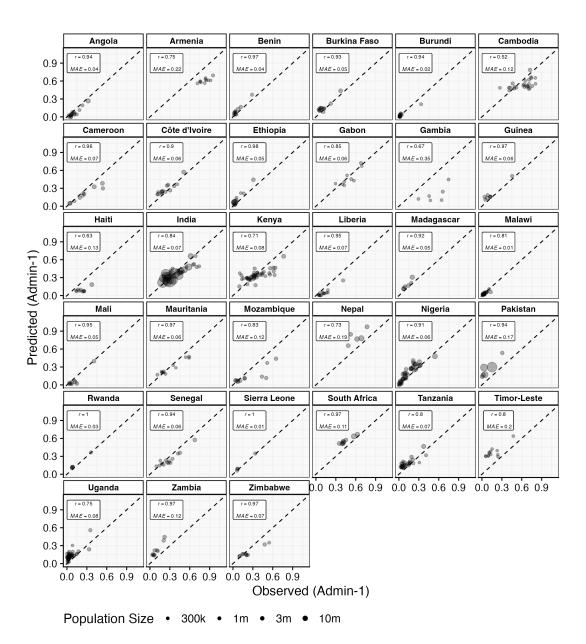


Fig. S26. Scatterplot of observed vs. predicted internet adoption for women by country.

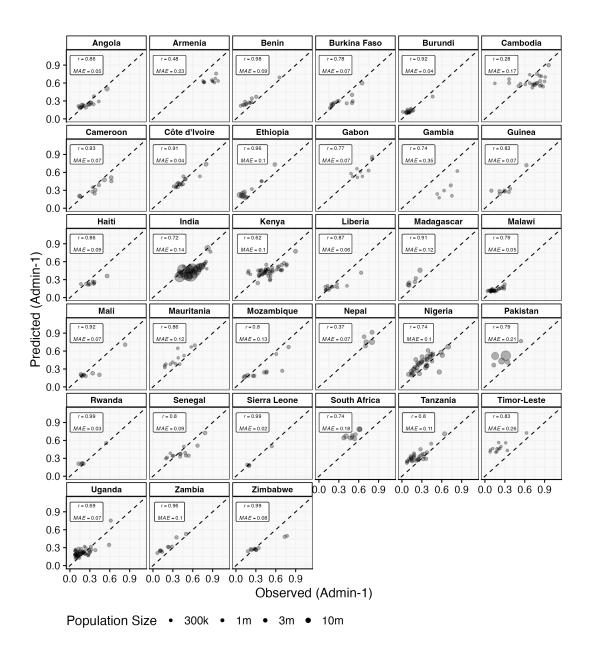


Fig. S27. Scatterplot of observed vs. predicted internet adoption for men by country.

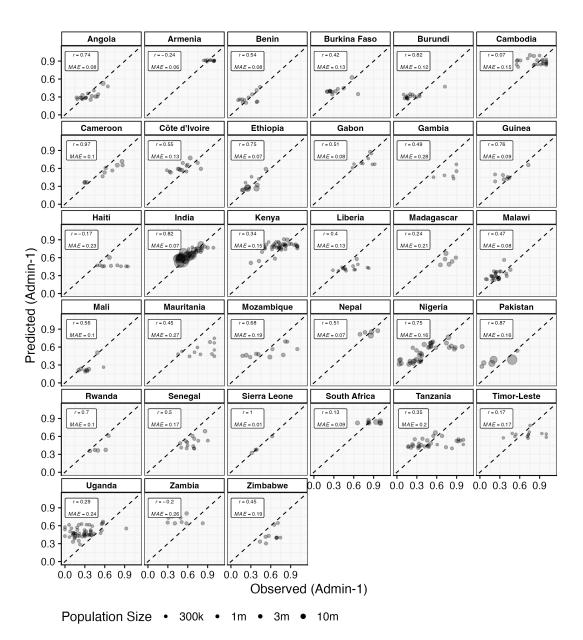


Fig. S28. Scatterplot of observed vs. predicted internet adoption gender gap index by country.

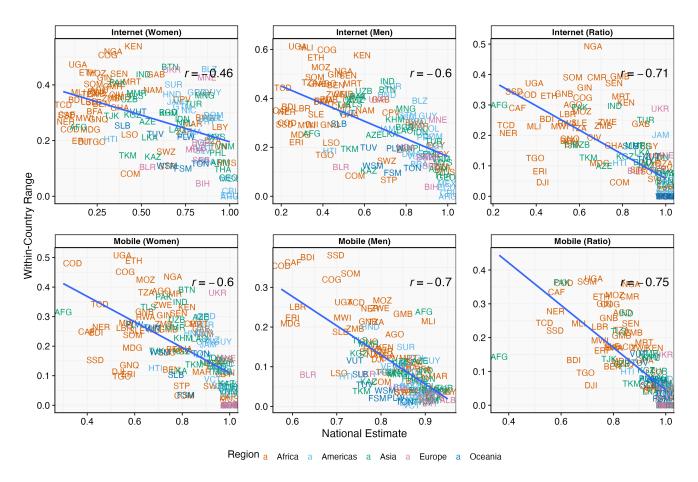


Fig. S29. Relationship between national-level estimates and the within-country spread between the top and bottom region for our six outcomes of interest. Labels show the ISO-3 country codes.

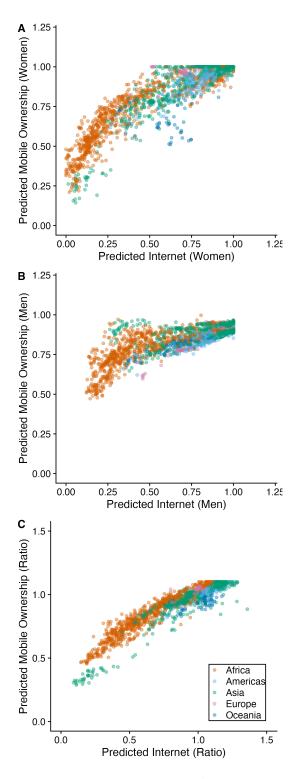


Fig. S30. (A) Comparison of predicted internet adoption and mobile phone adoption for women. (B) Comparison of predicted internet adoption and mobile phone adoption for men. (C) Comparison of predicted internet gender gap index and predicted mobile gender gap index.

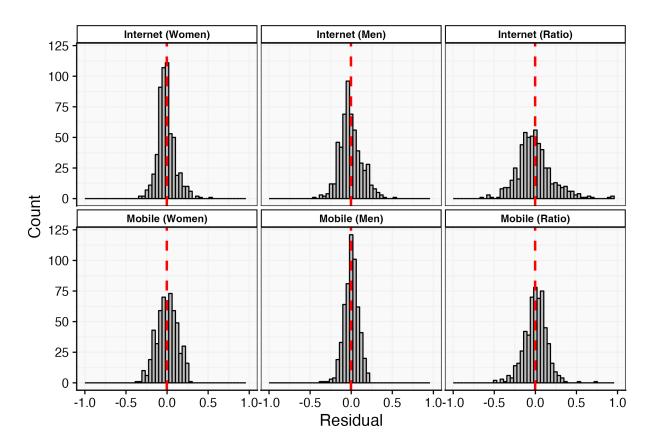
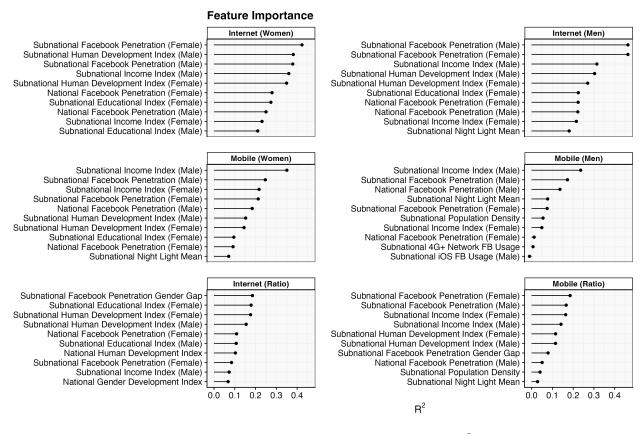


Fig. S31. The residual (observed - predicted) from leave-one-country-out cross-validation (LOCO-CV) for all subnational regions with available ground truth data by indicator. Red dashed line shows mean of residual values.



 $\textbf{Fig. S32.} \ \ \text{Feature importance by indicator. Top 10 features are shown.} \ \ \text{Feature importance is calculated as the } \ R^2 \ \text{value from a univariate regression.}$

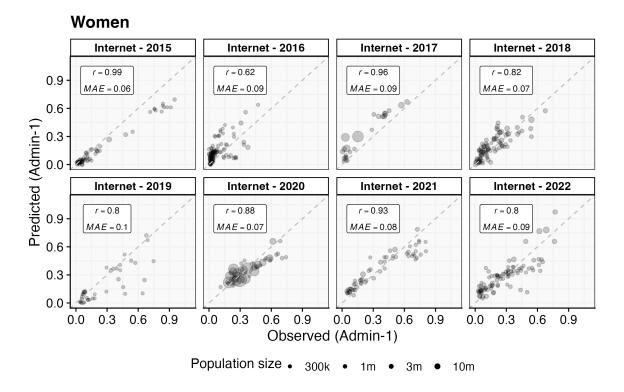


Fig. S33. Predicted vs. observed value for female internet adoption, disaggregated by year. Predictions are based on leave-one-country-out cross-validation (LOCO-CV).

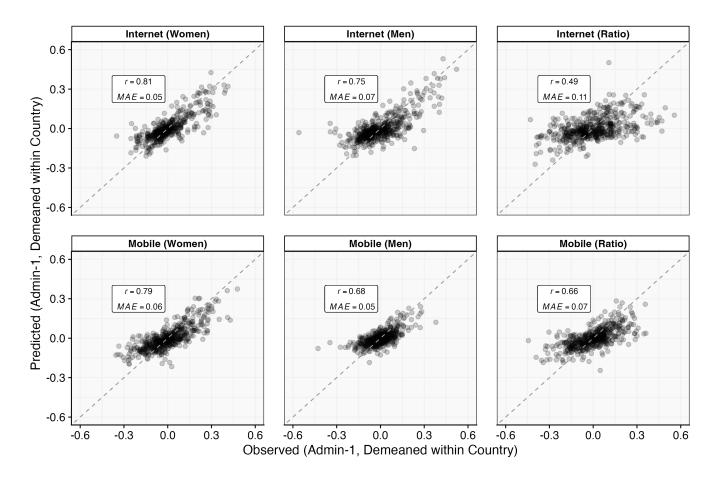


Fig. S34. Predicted vs. observed values, demeaned by country. Predictions are based on leave-one-country-out cross-validation (LOCO-CV).

6. REFORMS Checklist

The REFORMS checklist, developed collaboratively by 19 researchers across the social, computer, and physical sciences, is a resource for promoting transparency and reproducibility in machine learning science (14). We complete this checklist to promote methodological transparency.

237 6A. Study Goals.

233

242

243

246

247

254

255

256

263 264

269

270

- 238 1a. State the population or distribution about which the scientific claim is made.
- This study makes scientific claims about levels and gaps of digital adoption in 2,075 subnational regions across 117 different low- and middle-income countries (LMICs) over the period 2015 through 2025.
- 241 1b. Describe the motivation for choosing this population or distribution.
 - We focus on LMICs settings as overall levels of digital penetration are low and gender gaps disfavoring women are high. We focus on the first subnational level as subnational variation represents a substantial component of overall inequality, especially in countries with the lowest levels of development.
- 245 1c. Describe the motivation for the use of ML methods in the study.
 - We use machine learning methods to predict levels and gaps of internet adoption and mobile phone ownership by gender. Machine learning is an appropriate choice for this task because our primary focus is on predictive accuracy rather than model interpretation. Additionally, machine learning algorithms are better suited for handling the complex interactions and non-linear relationships among features. Given that we are interested in estimating trends in digital adoption over time, machine learning models are helpful in their flexibility to capture temporal trends and year-specific shifts in adoption patterns.

252 6B. Computational Reproducibility.

- 253 2a. Describe the dataset used for training and evaluating the model and provide a link or DOI to uniquely identify the dataset.
 - The dataset used to train and evaluate the model contains columns corresponding to model features or outcomes and rows corresponding to different subnational units for each year from 2015 through 2025. The dataset is available from: https://doi.org/10.17605/OSF.IO/5E8WF. For more information on how each feature was constructed, see Section 1.
- 257 **2b.** Provide details about the code used to train and evaluate the model and produce the results reported in the paper along with link or DOI to uniquely identify the version of the code used.
- To train our machine learning algorithms, we used an ensemble Superlearner (7). We first fit separate models for each of our six outcomes separately using the SL3 package in R (15). All code to train these models is available in our replication package: https://doi.org/10.17605/OSF.IO/5E8WF.
- 262 2c. Describe the computing infrastructure used.
 - All computations were carried out on 2023 MacBook Pro with an Apple M2 Pro chip, 16GB memory, and Sonoma 14.1 operating system. We use R version 4.3.1 and package versions recorded in the README file of the replication package.
- 26. Provide a README file which contains instructions for generating the results using the provided dataset and code.
- A README file containing instructions for generating all estimates, figures, and tables presented in the paper is available from: https://doi.org/10.17605/OSF.IO/5E8WF.
- 2e. Provide a reproduction script to produce all results reported in the paper.
 - The replication scripts for generating all figures and code in the paper are available here: https://doi.org/10.17605/OSF.IO/5E8WF

6C. Data Quality.

- 271 3a. Describe source(s) of data, separately for the training and evaluation datasets, along with the time when the dataset(s) are collected, the source and process of ground-truth annotations, and other data documentation.
- The data for this study come from several different sources. First, our ground truth data came from a series of 33 Demographic and Health Surveys (DHS). The survey datasets were obtained directly from the DHS Program's website on March 1, 2024. To construct our features, we combine data from the following sources: Worldpop, NASA Earth Observation Group, Global Data Lab, and the Facebook Marketing API. For more details on data processing, see Section 1.
- In addition, we used data two auxiliary sources for validation: Multiple Indicator Cluster Surveys (MICS) and LSMS (Living Standards Measurement Study). These data were obtained in May 2025.

280 3b. State the distribution or set from which the dataset is sampled (i.e., the sampling frame).

The dataset used for our analysis is structured where each observation (row) corresponds to a different subnational unit by year. Each feature (column) corresponds to a characteristic of a subnational unit. The ground truth rates of digital adoption in the dataset are calculated based on microdata from DHS surveys, which typically use a stratified two-stage cluster design (16).

All features are temporally aligned to their respective year, effectively creating a longitudinal panel spanning 2015–2025.

3c. Justify why the dataset is useful for the modeling task at hand.

This dataset is appropriate for modeling subnational levels and gaps of internet and mobile phone adoption as it includes, at the admin-1 level, both ground truth measures of digital adoption and a carefully curated set of predictors associated with digital adoption and gaps.

6D. Data Pre-processing.

282

283

284

287

288

289

290

291

292

293

294

295

297

300

303

304

305

307

308

309

310

311

313

314

315

316

317

318

319

320

321

322

323

324

325

326

328

4a. Describe whether any samples are excluded with a rationale for why they are excluded.

We only make predictions for LMICs where Facebook MAU data is available. No Facebook MAU counts are available for the following countries: American Samoa, China, Cuba, Fiji, French Southern Territories, Kosovo, Marshall Islands, Mayotte, North Korea, Papua New Guinea, Russia, Réunion, Saint Helena, Ascension, and Tristan da Cunha, Seychelles, Sudan, Western Sahara.

296 4b. Describe how impossible or corrupt samples are dealt with.

There are no impossible or corrupt samples.

298 4c. Describe all transformations of the dataset from its raw form to the form used in the model, for instance, treatment of
299 missing data and normalization—preferably through a flow chart.

For most subnational units in our analysis, we have no missing predictors. When data is missing, we impute using the value from nearest non-missing year within that subnational unit. If data is missing for a feature for all years, we use the median value within the continent. An overview of data processing is available in Section 1.

6E. Modeling.

5a. Describe, in detail, all models trained.

We fit six different ensemble Superlearner models, one for each outcome of interest. Each ensemble Superlearner algorithm combines multiple predictions from a library of individual machine learning algorithms. Specifically, we include the following individual machine learning algorithms in our ensemble library:

- Generalized Linear Model (GLM)
- Lasso Regression
- Ridge Regression
- Elastic Net Regression
- Polynomial Spline Regression
- Random Forests
 - Gradient Boosted Machine (GBM)
 - Extreme Gradient Boosting (XGB)

Temporal variation was captured through year-specific features and the inclusion of a relative-year covariate, allowing the model to learn both spatial and temporal patterns in adoption.

5b. Justify the choice of model types implemented.

We chose to use an ensemble Superlearner model to enhance predictive accuracy by leveraging the strengths and smoothing over limitations of each individual model. The choice of individual machine learning algorithms was driven by their ability to handle various data characteristics, such as non-linear relationships, interactions, and high-dimensional data. We selected a diverse set of machine learning algorithms for our ensemble library to capture a wide range of data characteristics, including non-linear relationships, interactions, and high-dimensional features.

- 5c. Describe the method for evaluating the model(s) reported in the paper, including details of train-test splits or cross-validation folds. The models were evaluated using two types of cross-validation:
 - 10-fold cross-validation: The data were randomly split into ten folds, with nine folds used for training and one for testing, repeated for each fold. This gives a sense of how the model would perform for countries with subnational ground truth estimates of adoption available for sum, but not all, admin-1 units.

• Leave-one-country-out cross-validation (LOCO-CV): Data from one country were held out at a time, the model was trained on the remaining countries, and predictions were made for the subnational units in the held-out country. This process was repeated for each country, ensuring that no data from the test country influenced the training. This strategy is more conservative, and gives insight into how the model would perform on a country where we have some subnational ground truth estimates of adoption.

We further evaluated the models by benchmarking against external estimates from MICS and LSMS surveys. This allows us to assess the performance of the model against independent estimates. To evaluate the models' ability to capture trends over time, we use countries with repeated surveys (from DHS, MICS, and LSMS) to compare our predicted change over time with observed changes over time, with the caveat that observed changes over time may reflect true change or artifacts of sampling variation and survey inconsistencies. Overall, our results demonstrate that our models capture changes in adoption reasonably well.

340 5d. Describe the method for selecting the model(s) reported in the paper.

We report both the performance of the ensemble Superlearner algorithms and the individual machine learning algorithms in Fig. S22. However, in the main text, we only show predictions from our best-performing Superlearner algorithms. The ensemble Superlearner algorithm is a weighted combination of predictions from each individual machine learning algorithm, and has the best overall performance across all indicators. Weights are calculated using a non-negative least squares (NNLS) regression meta-learner and shown in Section 3A.

5e. For the model(s) reported in the paper, specify details about the hyperparameter tuning.

Hyperparameter tuning was performed ad-hoc for each individual model within the Superlearner framework using cross-validation. Specific tuning processes were applied as follows:

- Random forests: Number of trees
- Gradient boosting machines: Learning rate, number of trees, and tree depth
- **5f.** Justify that model comparisons are against appropriate baselines.

Our model baseline is a generalized linear model (GLM), fit within our Superlearner framework. This simple model is a standard and appropriate baseline that allows us to assess the performance of our ensemble superlearner algorithm.

6F. Data Leakage.

329

330

331

332

334

335

336

337

339

341

343

344

345

346

351

353

354

361

362

363

366

367

371

372

373

374

376

377

378

380

- ³⁵⁵ 6a. Justify that pre-processing and modeling steps only use information from the training dataset (and not the test dataset).

 ³⁵⁶ Pre-processing and modeling steps were strictly limited to using information from the training dataset. The LOCO-CV approach ensured that no data from the test countries were included in the training process, maintaining strict data separation.
- 559 6b. Describe methods used to address dependencies or duplicates between the training and test datasets.

Dependencies and duplicates were managed by ensuring that each country's data were treated independently during the LOCO-CV process. This approach inherently avoids any overlap or dependencies between training and test datasets.

6c. Justify that each feature or input used in the model is legitimate for the task at hand and does not lead to leakage.

All features used in our models were carefully selected to avoid data leakage. None of the features in our models are proxies for the outcome, and were all measured independently of the outcomes.

6G. Metrics and Uncertainty.

7a. State all metrics used to assess and compare model performance. Justify that the metric used to select the final model is suitable for the task.

For our primary model performance metric, we use the coefficient of determination, R^2 . This metric is valuable because it quantifies the proportion of variance in the dependent variable explained by the model, providing an absolute measure of model fit. Additionally, we use the mean absolute error (MAE) to assess the average magnitude of prediction errors, offering a direct interpretation of prediction accuracy in the units of the dependent variable. Finally, we use the Pearson correlation coefficient (r), which measures the linear correlation between observed and predicted values, showing how well the predicted values follow the trend of the observed ground truth data. These metrics collectively ensure a comprehensive evaluation of the model's performance, capturing both fit quality and prediction accuracy.

7b. State uncertainty estimates and give details of how these are calculated.

To estimate uncertainty for each subnational unit, we regress the absolute residuals against all observable variables for units with ground truth data. We use non-negative least squares regression to ensure estimated absolute residuals are positive. We then use this model to predict the absolute residual size for all subnational units.

7c. Justify the choice of statistical tests (if used) and a check for the assumptions of the statistical test.

We do not conduct any statistical tests.

6H. Generalizability and Limitations.

382 8a. Describe evidence of external validity.

Our models are calibrated using ground truth data from DHS surveys. It is possible that countries that do not have DHS surveys differ in important ways from the countries that do have DHS surveys. Given the availability of ground truth coverage from 33 different countries, this is unlikely to drastically affect our external validity. Further, comparison with independent ground truth estimates of digital adoption from LSMS surveys and MICs surveys at the subnational-level revealed strong agreement in countries with no DHS surveys.

8b. Describe contexts in which the authors do not expect the study's findings to hold.

In settings where digital adoption is especially high, the relationship between Facebook use and internet use might be more heterogeneous. Our models' performance in high-adoption settings is still reasonably accurate, but it performs best at estimating internet adoption levels in lower penetration settings. This is reflected in the higher uncertainty estimates in high-adoption settings.

In addition, if the correlation between Facebook penetration and digital adoption weakens in the future, the effectiveness of our methods may decline. However, the rise of other social media platforms could provide alternative or complementary data sources, if these user counts become publicly available.

Finally, estimating trends in digital adoption over time is inherently challenging. Our validation exercises show promising alignment between estimated and observed trends, especially given data limitations. However, more reliable ground truth estimates of trends over time would allow for more rigorous validation and would strengthen confidence in the models' ability to capture temporal dynamics.

References

383

384

385

387

388

389

392

395

399

400

404

405

407

408

409

410

411

412

413 414

415

416

420

421

- 1. M Araujo, Y Mejova, I Weber, F Benevenuto, Using Facebook Ads Audiences for Global Lifestyle Disease Surveillance:
 Promises and Limitations in *Proceedings of the 2017 ACM on Web Science Conference*, WebSci '17. (ACM, New York,
 NY, USA), pp. 253–257 (2017).
 - 2. WorldPop, Open Spatial Demographic Data and Research (https://www.worldpop.org/) (2023).
 - 3. J Smits, I Permanyer, The Subnational Human Development Database. Sci. Data 6, 190038 (2019).
 - 4. CD Elvidge, M Zhizhin, T Ghosh, FC Hsu, J Taneja, Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. *Remote. Sens.* 13, 922 (2021).
 - 5. CD Elvidge, KE Baugh, M Zhizhin, FC Hsu, Why VIIRS data are superior to DMSP for mapping nighttime lights. *Proc. Asia-Pacific Adv. Netw.* **35**, 62 (2013).
 - 6. UN, Global Sustainable Development Report, (Technical report, Division of Economic and Social Affairs.), Technical report (2016).
 - 7. RV Phillips, MJ van der Laan, H Lee, S Gruber, Practical considerations for specifying a super learner. *Int. J. Epidemiol.* **52**, 1276–1285 (2023).
 - 8. G Chi, H Fang, S Chatterjee, JE Blumenstock, Microestimates of wealth for all low- and middle-income countries. *Proc. Natl. Acad. Sci.* **119**, e2113658119 (2022).
 - 9. I Permanyer, J Smits, Inequality in Human Development across the Globe. Popul. Dev. Rev. 46, 583–601 (2020).
- S Srinivasan, Disaggregating Digital Divides: Survey-based Estimates of Ownership and Use of Digital Technologies in
 Low- and Middle-income Countries. (2024).
- 11. W Bank, Living Standards Measurement Study (LSMS) (2023).
 - 12. S Khan, A Hancioglu, Multiple Indicator Cluster Surveys: Delivering Robust Data on Children and Women across the Globe. Stud. Fam. Plan. 50, 279–286 (2019).
- 13. A Bolgrien, EH Boyle, M Sobek, ML King, IPUMS-MICS Data Harmonization Code: Version 1.2 (2024).
- 423 14. S Kapoor, et al., REFORMS: Reporting Standards for Machine Learning Based Science (2023).
- 424 15. J Coyle, N Hejazi, I Malenica, O Sofrygin, R Phillips, Sl3: Modern Super Learning with Pipelines (Zenodo) (2021).
- 16. D Program, Guide to DHS Statistics DHS-8, Technical report (2023).